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In semiconductors the band edge absorption properties are dominated by Coulomb

bound electron-hole pairs known as excitons. In an isotropic ideal infinite crystal such as

a bulk semiconductors the exciton does not decay to a ground state but instead exchanges

energy with the internal modes of the electromagnetic field found from the same boundary

conditions as the crystal. It is only the leakage of photons out of the crystal due to real

crystals having finite size that allows the exciton-light field to decay. This exchange of energy

led to the concept of the exciton-polariton which represents the coupled system of exciton

and light.

In this work we bring novel insight into the behavior of excitons and exciton-polaritons

using a new tool for performing of multidimensional coherent spectroscopy (MDCS) exper-

iments. We first present a new realization of MDCS using a collinear approach to record

a nonlinear wave-mixing signal as a photocurrent. This approach has many advantages

over conventional approaches to MDCS as it allows for microscopy and the study of single

nano-objects while recording the phase and amplitude of these signals.

To achieve the strong coupling regime in semiconductors a semiconductor microcavity

is often grown around a quantum well. When optically excited the quantum well exciton ex-

changes energy with the electromagnetic field resulting in new normal modes. These normal

modes are called exciton-polaritons. The strong coupling regime is typically characterized by

an avoided crossing measured as a function of exciton-cavity detuning. In polariton systems,

the new normal modes result in quasiparticles with very small mass due to the photonic

component of the system. As a result the detuning becomes a dispersion relation. We ex-

plore the higher lying dispersion curves of exciton-polaritons in a semiconductor microcavity
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by utilizing a pulse sequence that creates higher order coherences, i.e. coherences between

states with an energy difference of ∆n > 1. By recording this coherence as a function of

detuning we are able to map out the strong coupling for these higher lying states bringing

new insight into the nature of strong coupling and the bosonic nature of polaritons.
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Chapter 1

Introduction to Excitons and Exciton-Polaritons

In semiconductors, the band edge absorption properties are dominated by Coulomb

bound electron-hole pairs known as excitons. The band-edge optical absorption of semicon-

ductors, as determined by excitons, was formally developed by Elliot [1]. Since the pioneering

work of Hopfield these excitons have been considered a special class of the quantized po-

larization field in an insulating crystal. In an isotropic ideal infinite crystal, such as a bulk

semiconductors, the exciton does not decay to a ground state but instead exchanges energy

with the internal modes of the electromagnetic field found from the same boundary condi-

tions as the crystal. It is only the leakage of photons out of the crystal due to real crystals

having finite size that allows the exciton-light field to decay. This exchange of energy led

to the concept of the exciton-polariton which represents the coupled system of exciton and

light.

When studying semiconductor nanostructures we generally refer to excitons when the

light-matter coupling is not strong and exciton-polaritons when the light-matter coupling

is sufficiently strong to observe new normal modes. Both excitons and exciton-polaritons

represent collective excitations of semiconductor crystals that have been extensively studied

over the last few decades. Historically, these studies have progressed from bulk semiconductor

experiments to experiments where the exciton is confined in a semiconductor nanostructure

and the light field is confined in a microcavities.

The work conducted in this thesis was performed on semiconductor quantum wells
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or quantum wells strongly coupled to a microcavity. In these systems the lifetimes and

dephasing of the excitons are on the order of ∼ 10ps. This requires ultrafast techniques

to study their dynamical response. In this chapter we review the properties of direct-gap

semiconductors near the band edge as well as nanostructures that confine the exciton, and

microcavities that confine the light field.

1.1 Classifying Materials and Semiconductor Band Structure

Semiconductors are a class of materials that are “between” a conductor and an insu-

lator. They are characterized by electronic structure known as the valence and conduction

bands that describe electronic single-particle states. The valence bands are of lower energy

while the conduction bands are higher energy. Because only partially filled bands can conduct

[2], the electron occupation of the bands is critical to understanding the material properties.

Metals conduct well because their conduction band is partially occupied. Semiconductors

and insulators do not have a partially filled conduction band, typically requiring the absorp-

tion of light or the application of an applied field to make them conduct. The distinction

between semiconductors and insulators rests in the energy difference between the valence

and conduction bands (bandgap), as a smaller bandgap makes a material correspondingly

easier to conduct. Quantitatively, the occupation probability of a state is described by the

Fermi-Dirac distribution

f(ε) =
1

1 + e
ε−µ
kT

(1.1)

where ε is the energy level of an electron state, µ is the Fermi level, k is the Boltzmann

constant and T is the temperature. For a fixed temperature and energy level it is the

Fermi level that determines the occupation of the conduction band. In metals the Fermi

level lies within the conduction band leading to occupation of these higher lying states by

electrons. For insulators the Fermi level typically lies in between the conduction band and
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valence band and this bandgap is typically quite large leading to poor electrical conductivity.

Semiconductors are like insulators in that the Fermi level lies between the conduction and

valence bands. However, unlike insulators the bandgap is much smaller making it relatively

easier to partially occupy the conduction band.

The origin of the band structure begins with the the Schrodinger equation for an

electron in a periodic potential.

[
−~2

2m∗
∇2 + U(~r)]Ψ(~r) = EΨ(~r) (1.2)

where E is the energy level, m∗ is the effective mass, U(~r) is the potential and Ψ(~r) is

the electron wavefunction. In a crystal the repeating pattern of the unit cell, the smallest

arrangement of atoms, results in a periodic potential U(~r). For a lattice vector ~R, U(~r) is

periodic with U(~r) = U(~r+ ~R). Due to the periodicity of the potential, the wavefunctions are

Ψ(~r) = ei
~k·~runk(~r) where unk(~r) = unk(~r + ~R). This directly provides Bloch’s theorem that

Ψ(~r+ ~R) = Ψ(~r)ei
~k·~r [2]. These solutions have important physical consequences for electrons

in solids. The description of the electron as a plane wave implies that it is delocalized over

the entire crystal and that it propagates without scattering. This is only true, however,

under the condition that the electron has a state to move into. In the context of the Fermi-

Dirac distribution (Eq. 1.1), if a band is completely occupied by electrons then there is no

free state for it to move into and it will have infinite resistivity and be termed an insulator

or semiconductor. Conversely, metals conduct because the electrons in a crystal propagate

without scattering and because there are unoccupied states available for it to move to [3]. In

general, the Bloch wavefunction defines the electronic envelope and additional calculations

are needed to find the interactions of the lattice with the electrons. These interaction give

the electrons dispersion and determine the effective mass of electron-quasiparticles in a band.

For semiconductors a tight binding model is often used to find the band structure

dispersion. This model assumes that the crystal Hamiltonian is H = Hat+∆U(r) where Hat
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is the atomic Hamiltonian at the lattice point while ∆U(r) is a correction term allowing the

atomic potential to satisfy the periodic potential of a crystal. Using separation of variables

gives Ψ(~r) =
∑

R e
i~k·~rφ(~r− ~R) with the term φ(~r) =

∑
n bnψn(r) where ψn(r) are the localized

atomic wavefunctions. For the semiconductors discussed in this thesis (GaAs,InGaAs) the

outer shell electrons are predominately s and p type. Given a particular tight binding

Hamiltonian, this method can be used to calculate the dispersion of the semiconductor band

structure. A prototypical band structure for a direct gap semiconductor (GaAs) is presented

in Fig. 1.4.

Figure 1.1: The bulk band structure of GaAs. At the Γ point in GaAs a direct bandgap
occurs in which the conduction band (CB) and the degenerate valence bands (HH) and (LH)
have vertices. The bandgap energy of GaAs of 1.5eV Eg is depicted with the double arrow.
Figure adapted from Ref. [4].

In GaAs at the Γ point (k = 0) three bands occur (Fig. 1.1), one conduction band (CB)

and the two degenerate hole bands (HH and LH) [3]. A hole occurs when an electron with

wavevector ke has been promoted from the valence band to the conduction band leaving

the valence band with net wavevector kh = −ke. The hole has opposite charge, has the

opposite sign of energy and has the negative mass with respect to the electron mass in the

valence band [5]. Fig. 1.1 refers to a valence and conduction band. In a picture where
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the hole exists the hole band is the valence band. This is often confusing. To convert to a

hole-picture it is implicitly understood the x axis is increasing from left-right for the electron

and decreasing from left-right for the hole bands. Additionally, for the hole, the sign of the

y axis has the opposite sign and holes increase in energy the lower they occur in the plot.

In the tight binding picture, at the Γ point, the CB band is predominately an s type wave

function with orbital angular momentum (L) = 0 and spin angular momentum (S) = ~
2
.

The total angular momentum of the CB is J = L+ S = ~
2

with a total angular momentum

wavefunction χCB = |1
2
,±1

2
〉. The degenerate hole bands are p type wavefunctions with

L = 1, giving these bands total angular momentum J = 3~
2

. The heavy-hole band (HH)

band is characterized by mj = 3
2

with the wavefunction χHH = |3
2
,±3

2
〉. The light-hole band

(LH) band is characterized by mj = 1
2

with the wavefunction χLH = |3
2
,±1

2
〉. Near k = 0 an

effective mass

m∗ = ~2(
∂2E

∂k2
)−1 (1.3)

can be defined for the different bands. Due to the difference in curvature between the

LH and HH band, these bands have different effective masses hence their naming conven-

tion. A semiconductor is termed direct or indirect depending on the whether the critical

points of the electronic bands occur at the same k vector (Fig. 1.2a-b). Whether or not a

semiconductor is direct or indirect significantly modifies its optical properties. In direct gap

semiconductors an electron can be promoted from the valence band to the conduction band

with the absorption of a photon equal to the bandgap energy (Fig. 1.2a). Indirect semi-

conductors require the emission of a phonon in order to absorb light at the bandgap energy.

The phonon provides a large wavevector with a negligible energy contribution (Fig. 1.2b).

When considering the inverse of the absorption process, the emission of light, this effect

is even more pronounced. In indirect semiconductors, the phonon requirement makes the

recombination rate much slower and subsequently radiative recombination is not a dominant
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relaxation process.

Figure 1.2: Difference between a direct and indirect semiconductor. a.) In a direct gap
semiconductor the critical points of both the conduction and valence bands occur at the
same wavevector ke. Optical absorption (red line) occurs at the bandgap energy Eg. b.) In
indirect gap semiconductors the critical points of the conduction and valence bands do not
occur at the same wavevector ke. Optical absorption in indirect semiconductors typically
involves a phonon emission (blue arrow) and the absorption of a photon at the bandgap
energy Eg in order to satisfy wavevector conservation.

1.2 Bulk Excitons

At the band edge of a semiconductor, the electronic band structure describes the elec-

trons in the conduction band and the holes in the valence band. However, the semiconductor

optical properties are not determined by this single particle picture of the semiconductor.
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The absorption of a photon promotes an electron with wavevector ke leaving behind a hole

with wavevector kh = −ke. This is a significant simplification of the absorption process as

an electron in the conduction band will interact with the valence band hole through the

Coulomb interaction. In semiconductors the Coulomb interaction dominates the band edge

optical response. Let us consider a two-band direct gap semiconductor without spin and

follow the approach of [6] to find the Coulomb corrected picture of a semiconductor. The

Hamiltonian for an interacting electron-hole is:

H =

∫
d3xΨ†(x)H0(x)Ψ(x) +

∫
d3xd3yΨ†(x)Ψ†(y)V (x− y)Ψ†(y)Ψ(x) (1.4)

where H0 is the single electron Hamiltonian and V (x) = e2

|x| is the Coulomb interaction.

The wavefunctions for this Hamiltonian can be written

Ψ(x) =
∑
j=c,v

ak,jµkj(x)
eik·x√
N

(1.5)

where ak,j and a†k,j are Fermi annihilation and creation operators for the valence and

conduction band and µkj(x) e
ik·x
√
N

is the eigenfunction for an electron with wavevector k in

the energy band j. The wavefunction µk,j(x) is the Bloch wavefunction and N is the number

of unit cells. The expression µkj(x) e
ik·x
√
N

in Eq. 1.5 is itself a wavefunction ψk,j = µkj(x) e
ik·x
√
N

that satisfies H0ψk,j(x) = E0
kjψk,j the Hamiltonian for single electrons. At this point some

limits should be taken. In Eq. 1.4 if V (x − y) = 0 the crystal ground state is given by the

electron-hole states discussed above that satisfy the Bloch theorem. However, if V 6= 0 then

these electron states are not the eigenstates of the crystal. This equation can only be solved

analytically in certain approximations, but the Coulomb interaction will repel charges of like

charge and attract charges of opposite charge. Since the absorption of a photon involves

creating an electron and a hole and does not involve creating an electron-electron, or hole-

hole these same-charge effects are typically considered of secondary importance. For the

rest of this thesis the screening of the Coulomb potential, and the repulsive interactions will
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be termed ”residual Coulomb” or many-body effects. Consider the case of an electron in

the conduction band and a hole in the valence band separated by a distance larger than

a unit cell. In this case the Coulomb and plane wave factors are slowly varying as in the

original approximations of Wannier [7]. In this limit and by invoking the effective-mass

approximation near the band edge, the Hamiltonian (Eq. 1.4) can be reduced to:

H =
p2
e

2me

+
p2
h

2mh

+
1

4πεε0|xe − xh|
+ Eg. (1.6)

Here pe(ph) is the momentum of the electron(hole), me(mh) is the effective mass of the

electron(hole), ε is the dielectric constant of the material, Eg is the band gap energy, and

~xe( ~xh) are the positions of the electron(hole). The Hamiltonian, (Eq. 1.6) is reminiscent of

a Hydrogenic system except that the proton(hole) is not treated as stationary. We introduce

the relative electron-hole coordinate ~r = ~xe − ~xh with relative wavevector ~l = mh
M
ke + me

M
~kh

where ke(kh) represent the electron(hole) wavevector. We further introduce the center of

mass coordinate ~R = mh
M
~xe+ me

M
~xh (CM wavevector ~K) and M = me+mh so that the center

of mass motion and relative motion can be separated. From this an excitonic-wavefunction

can be written as

φ(xe, xh) = ψn(r)eiK·R. (1.7)

In the relative basis and introducing the reduced mass mr = memh
M

the Schrodinger equation

becomes:

[
p2
r

2mr

− e2

4πεε0r
]ψn(r) = Eexψn(r). (1.8)

In this expression we have grouped Eg into Eex as it is just a constant. Solving this

equation results in a Hydrogenic series with energy levels denoted by the Rydberg index n

[8]. The total energy of the electron-hole pair includes the plane wave dispersion ~K2

2M
so that

the total energy of the exciton is
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Eexciton(n,K) =
~K2

2M
+ Eg −

ER
n2
. (1.9)

Here the excitonic Rydberg Energy is

ER =
e2

8πε0εa0

(1.10)

where a0 is the Bohr radius of the exciton given by

a0 =
4πεrε0~2

e2M
. (1.11)

In GaAs based systems discussed in this text the bulk exciton binding energy has been

found to be 4.2meV with a bandgap of 1.52eV [9] and a Bohr radius ∼ 10nm. The exciton

as a bound electron-hole pair represents the Coulomb corrected eigenstates of the crystal.

The crystal is considered to be in an excitation vacuum in the absence of an exciton and

the first Rydberg state of the exciton is the first excited state of the crystal (Fig. 1.3a).

The exciton energy structure consists of a series of Rydberg states below the bandgap of the

semiconductor. Optical excitation can either excite unbound Coulomb interacting electron-

hole pairs (excitonic continuum) or bound exciton states. As a result of the exciton mass

only a select range of wavevectors are accessible with optical excitation, those near K = 0.

The expected absorption spectrum of excitons in a direct gap semiconductor is shown in (Fig.

1.3b). In this spectrum the Rydberg exciton-states are labeled by n below the electron-hole

continuum.

From these simplifying equations and dispersion relation an excitonic creation operator

C† can be written in terms of the electron Pauli operators a(a†) and the hole Pauli operators

b(b†)

C†K,n =
∑
ke,kh

δK,ke+khψn(l)a†keb
†
kh
. (1.12)

These exciton creation and annihilation operators commute with the relationship
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Figure 1.3: a.) Exciton energy structure and dispersion relation. The exciton-spectrum
provides bound electron-hole states below the bandgap of the semiconductor (electron-hole
continuum) in this picture. b.) The expected optical spectrum of excitons in a direct gap
semiconductor. The Rydberg states are labeled be n while the electron-hole continuum is at
higher energy. Figure adapted from Ref. [10].

[CK′,n′ , C
†
K,n] = δK,K′δn,n′ +O(na3

0). (1.13)

If we remember that bosons with annihilation(creation) operators d(d†) have the com-

mutation relation [di, d
†
j] = δi,j then it is apparent from (Eq. 1.13) that excitons can be

considered bosons provided that the volume of excitations is small compared to a3
0. As this

density increases exciton-exciton interactions become increasingly important. From (Eq.

1.12) it is apparent that the exciton represents the number-state basis of the semiconductor

polarization field [6, 11, 12]. As the eigenbasis of the polarization field, excitons determine

the absorption properties of semiconductors which at low densities are similar to that of a

quantum harmonic oscillator [13].
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1.3 Absorption of Bulk Semiconductors: Exciton-Polaritons

Early on a significant issue in calculating the optical properties of semiconductors was

how to calculate the radiative lifetime of the exciton. The principle issue that Hopfield [11]

realized was that the electromagnetic field modes must satisfy the same boundary conditions

as the crystal. For an exciton with wavevector K to radiatively decay into a crystal-mode

photon with wavevector K and for that energy to be lost; the energy must escape the crystal.

Thus for a finite sized crystal, in an infinitely large volume, the radiative lifetime must be

determined by the electromagnetic field leakage out of the crystal. As the crystal becomes

large (as solid state physics often assumes) the radiative decay out of the crystal must go

to zero. This means that both the exciton and the photonic lifetime in the crystal must

become infinite in the limit of an infinitely sized crystal. Because the exciton is radiating

and absorbing light from the optical-crystal mode the two modes are coherently exchanging

energy. When the rate of energy exchange exceeds the loss rate the exciton and field become

strongly coupled leading to the exciton-polariton. As a result for an infinitely large crystal

Hopfield realized the energy sink that caused absorption and energy loss must come from

many-body interactions, phonon interactions etc. The the full light matter interaction for a

semiconductor in the rotating wave approximation is

H =
∑
k

~ωXb†kb
†
k +

∑
k

~ωγa†ka
†
k +

∑
k

g0(a†kbk + b†kak) +Hint. (1.14)

Here a slight change of notation occurs. The exciton center of mass wavevector is k with

excitonic operators b, while the electromagnetic field operators are a, the excitonic energy is

~ωX (Eq. 1.9) and the electromagnetic field energy is ~ωγ. The many-body interactions and

loss mechanism are determined by Hint. The electromagnetic field also obeys a dispersion

in k space Eγ = ~c|k|
n

where n is the index of refraction. The Hamiltonian (Eq. 1.14) is that

of two coupled harmonic oscillators. The Hamiltonian can be diagonalized to find the new

normal modes with operators
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Pk = Xkb
†
k + Cka

†
k

Qk = Xkb
†
k − Cka†k.

With this description the diagonalized Hamiltonian becomes

H =
∑
k

ELP (k)P †kP
†
k +

∑
k

EUP (k)Q†kQ
†
k. (1.15)

Here ELP (EUP ) represent new normal modes found from the coherent exchange of

the exciton and electromagnetic field. As a result of the coupling these states split by the

coherent exchange rate Ω = 2g0 and form a low energy mode ELP and a higher energy mode

EUP that are the lower and upper polariton. The lower polariton operators are Pk while the

upper polariton operators are Qk. The coefficients Xk and Ck are known as the Hopfield

coefficients [11, 14] with

|Xk|2 + |Ck|2 = 1. (1.16)

These coefficients relate the exciton and photon components of the wavefunction. As

the new modes of the system, the exciton-polaritons are the dressed states of the exciton.

When the coupling constant g0 is larger than the electromagnetic field leakage rate, these

new normal modes can be observed through an avoided crossing in wavevector k. When this

coupling constant is smaller than the leakage rate, we continue to describe the system by

excitons and their interaction with a classical radiation field.

1.4 Semiconductor Quantum Wells

A modern approach to the study of excitons is to confine them into 1, 2 or 3d confined

nanostructures. Doing this modifies the electron-hole density of states. For excitons the

effect of confinement is to increase the exciton binding energy making them accessible at

higher temperatures.
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Figure 1.4: The quantum confinement of electrons and holes in semiconductor quantum
wells. Shown are the electron and heavy hole n=1 states for InxGa1-xAs/GaAs quantum
wells. EV B and ECB correspond to the valence and conduction band offsets. The bandgap
of InxGa1-xAs is (x) dependent.

Of interest to this thesis is the confinement of excitons in 1d semiconductor nanos-

tructures called quantum wells. Quantum wells are grown by either molecular beam epitaxy

or metal-organic chemical vapor deposition. A prototypical quantum well might consist of

a small layer of InxGa1-xAs grown in between two larger layers of GaAs. Due to adding

fractional amounts (x) of indium the bandgap of the InxGa1-xAs will be smaller than that

of the GaAs. This gives a confinement potential that is equal for the the conduction and

valence bands provided that the chemical potential of GaAs is the same as InxGa1-xAs. In

actuality these materials have slightly different chemical potentials giving the confinement

energies an offset ECB,offset for the conduction band and EVB,offset for the valence band as

shown in Fig. 1.4. In InGaAs quantum wells the light-hole is typically not confined[15, 16].

This leaves the confinement of just the electron and heavy-hole justifying the use of a two

band picture.

The electrons and holes are confined in the growth direction (z direction) but free to

move in-plane. With the introduction of the Coulomb interaction an in-plane exciton is
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formed that is confined in the growth direction. This makes the hydrogenic solution to the

Coulomb potential cylindrical [17] and increases the binding energy of the exciton due to the

increased proximity of the electron to the hole in the z direction. In order to achieve any

significant increase in the exciton binding energy the well width needs to be on the order

of the Bohr radius of the exciton ∼ 10nm in GaAs. The binding energy of a heavy-hole

AlxGaAs1-x/GaAs exciton as a function of well width is shown in Fig. 1.5.

Figure 1.5: The calculated binding energy for quantum confined heavy-hole excitons in
AlxGaAs1-x/GaAs quantum wells as a function of well width. Figure adapted from [17].

In an excitonic picture the exciton binding energy again shifts the resonance below the

electron-hole states. The main difference with bulk excitons is that in a quantum well a

series of electron and hole sub-bands exist. As a result a series of confined excitonic states

exist below these confined energy levels.

The bulk polaritonic effects no longer apply for quantum-well excitons as the electro-

magnetic field modes are defined by the quantum well. These electromagnetic field modes



15

that coherently oscillate with the exciton have significant leakage out of the quantum well

and the quantum well exciton will be in the weak-coupling regime. In an excitonic basis the

band-edge Hamiltonian neglecting many-body interactions is

H =
∑
k||

~ωXb†k||b
†
k||

+
∑
k||

g0(E∗k||bk|| + b†k||Ek||). (1.17)

This equation is the same as Eq. 1.14 except that the exciton wavevector is defined to be

in-plane k|| and the electromagnetic field is written classically with electric field components

E∗, E.

1.5 Semiconductor Microcavities

Modern semiconductor heterostructure growth techniques have enabled the growth of

high quality Bragg mirrors. Bragg mirrors consist of material grown with a modulated index

of refraction. Each modulation layer has an optical thickness of λ
4

as shown in Fig. 1.6. This

modulation is designed to ensure constructive interference in the reflected direction. If two

DBR mirrors are spaced λc
2

or an integer multiple of λc
2

a microcavity is formed, where λc is

the optical wavelength.

The transmission coefficient describing such a microcavity [14] is

T =
(1−R1)(1−R2)

[1−√R1R2]2 + 4
√
R1R2 sin2(φ/2)

. (1.18)

Here R1 and R2 are the reflectances of the two DBR’s and φ is the cavity round trip

phase shift of a photon. The ”Q” factor is a characteristic parameter that determines how

underdamped a resonator is. For a cavity this quantity is

Q =
λc

∆λc
=

π(R1R2)1/4

1− (R1R2)1/2
. (1.19)

The Q factor of semiconductor microcavities is 4000−6000 and for a λc
2

cavity can be thought

of as the number of round trips light makes in the cavity. A very high Q micro-cavity means
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Figure 1.6: A prototypical microcavity structure with a quantum well at the cavity antinode.
Index modulation ensures high reflectivity of the top and bottom DRB while a quantum well
is grown at the center of the dialectric stack. This figure is from [14].

that it acts as a high quality stop-band for all incident light not at λc as shown in Fig.

1.7a. Other microcavity designs have achieved higher Q [18] but for this thesis Bragg mirror

microcavities are discussed. The Bragg microcavity confines light in the growth direction of

a semiconductor structure and achieves an antinode at the center of the cavity as shown in

Fig. 1.7b.

The effective cavity length can be varied by varying the incident excitation wavevector

k. As a result the cavity has an energy dispersion

Ecavity =
~c
nc

√
k2
|| + k2

⊥. (1.20)

Here k|| and k⊥ are the in plane and out of plane wavevectors. The out of plane wavevector is

k⊥ = nc2π/λc while in the small in-plane wavevector limit k|| ∼ 2π
λ

. In the small wavevector

limit the energy dispersion relation is parabolic [14] with a dispersion

Ecavity = Ecavity(k|| = 0) +
~2k2

||

2mcavity

. (1.21)
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Figure 1.7: a.) The reflection spectrum of an empty Bragg microcavity with Q∼ 4000. b.)
The field distribution in the microcavity exhibits an antinode at the center of the cavity due
to the modulation of the refractive index n. This figure is from [14].

The effective ”cavity photon mass” is:

mcavity =
Ecavity(k|| = 0)

c2/n2
c

. (1.22)

This dispersion relation allows for the tuning of the optical cavity by varying the incident

excitation wavevector. If an absorbing medium (such as a quantum well) is grown at the

antinode of the cavity the electromagnetic field interaction can be tuned onto resonance with

the absorbing medium. Due to the field distribution in the cavity the electromagnetic field

interaction is enhanced at the cavity antinode. The presence of a semiconductor quantum

well at the antinode of the cavity can lead to enhanced field-exciton interaction strength and

create an enhanced strong coupling regime where the semiconductor quantum well exciton is
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strongly coupled to the cavity mode. The new eigenmodes that result from this coupling are

analogous to the bulk exciton-polariton discussed previously. The primary difference is that

instead of an infinite crystal providing the mechanism for strong coupling it is the microcavity

that is preventing the electromagnetic field from leaking out of the semiconductor [19]. The

semiconductor quantum well exciton-polariton will be discussed in detail in this thesis.



Chapter 2

Theoretical Background for Coherent and MDCS Spectroscopy

Spectroscopy is a tool to characterize the optical response of an absorbing medium.

Basic spectroscopy techniques such as photoluminescence or linear absorption provide infor-

mation about resonant energies of absorbing media and their absorption strengths. However,

basic techniques are insufficient for understanding inhomogeneity, collective resonances, and

coherent many-body interactions. Fortunately, nonlinear spectroscopy can provide insight

into these phenomena [4].

Nonlinear spectroscopies are divided into two classes - coherent and incoherent spectro-

scopies. The simplest and thus most commonly used type are the incoherent techniques. In-

coherent techniques such as pump-probe spectroscopy optically excite a sample with a strong

pump and then probe the absorption(or reflection) with a probe beam. These techniques are

sensitive to changes in the population/excitation density. Measuring the population dynam-

ics can provide information about many effects, including multiphoton transitions [20, 21],

electron thermalization in metals [22, 23], tunneling times in semiconductor heterostructures

[24], optical gain [25, 26] and can also be used to classically dress absorbing semiconductor

nanostructures [27, 28].

Alternatively, coherent nonlinear spectroscopy is a technique that is sensitive to co-

herences in the sample. In the coherent picture of light-matter interactions, the matter-

resonance oscillates in a quantum mechanical superposition state with a phase defined by

the incident light and resonant transition energy. The evolution of this phase encodes both
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the resonant energy shifts and dephasing, making coherent spectroscopy an ideal tool to

measure these dynamic properties.

One of the main advantages of coherent nonlinear spectroscopy is its sensitivity to

many-body interactions. This advantage is because many-body interactions result in res-

onant energy shifts and additional dephasing in excitonic systems. In particular, excitons

can scatter off of each other by interacting through residual Coulomb interactions, exchange

interactions, and Pauli blocking. Because exciton-exciton scattering depends on the density

of excitons, the scattering energy that modifies the resonant exciton energy are termed ex-

citation induced shifts (EIS) [29]. If the exciton-exciton scattering interrupts the coherent

evolution of the excitons, additional dephasing will be observed in the coherent evolution.

Therefore, the irreversible broadening resulting from this scattering is termed excitation

induced dephasing (EID) [30, 31].

In this chapter I review the theoretical concepts of coherent spectroscopy building

towards a theoretical understanding of multidimensional coherent spectroscopy and the in-

formation encoded in a MDCS spectrum. I begin with a historical discussion of MDCS. I

then review absorption and the role of phase in coherent spectroscopy for non-interacting

systems. Next, the optical Bloch equations and spectroscopy Feynman diagrams are dis-

cussed in the impulsive limit in order to discuss the perturbation theory and perturbative

wave-mixing. Finally, the three types of third-order MDCS spectra, rephasing, nonrephasing,

and two-quantum are simulated and discussed.

2.0.1 Historical Development of MDCS

Historically, multidimensional spectroscopy developed with NMR [32] where two pulses

were used to probe nuclear spins. In these experiments the signal was recorded as a function

of τ the time between pulses and t∗ the time after the second pulse. The signals were then

Fourier transformed with respect to these two time axes. It became apparent that more

information about spin coupling was available from MDCS than in simple time-domain or
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one-dimensional experiments [33]. The success of MDCS in NMR led to the technique

being extended to the microwave [34], to the infrared regime [35] and to study optical-raman

spectra [36]. The infrared regime has become particularly important with the ability to study

the ultrafast vibrational couplings and structure of molecules [37–39]. Relatively recently,

MDCS was extended by the Jonas and coworkers [40] to the electronic regime to study the

dye IR144.

In the time since its demonstration for electronic MDCS it has been used to study

many-body interactions in quantum wells [41, 42], multiphoton absorption in organic dyes

[43], coupling between isolated excitonic transitions [44], coherent coupling between quantum

dots in a microcavity [45], collective resonances in atomic vapors [46] and quantum wells

[47],corrugated plasmonic resonances in silver [48], quantum-dot based solar cells [49], THz

spectroscopy of phonon-coupled quantum wells [50] and cyclotron motion in semiconductors

using optically generated THz pulses [51]. While this list is not comprehensive it does

demonstrate that MDCS has become in most cases the tool-of-choice to study coherent light-

matter interactions in the optical regime. In the following sections we describe a perturbative

approach to understand most MDCS experiments in the perturbative regime of light-matter

interactions.

2.1 Coherent Spectroscopy of Model Systems: Theory

2.1.1 Optical Absorption

Absorbing media such as semiconductor excitons, atoms, and molecules often exhibit

an optical resonance at the transition energy between two quantum mechanical states. When

excited by an electric field, on resonance, an induced material polarization oscillates out of

phase with the driving field. This dipole radiates and destructively interferes with the driving

field to cause absorption. From a quantum mechanical point of view the radiating polar-

ization comes from transitions between states. The time evolution of the quantum states is
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described by the Schrodinger equation. Environmental coupling and many-body interactions

requires a formalism capable of describing dynamic decaying processes. A description which

can describe classical and quantum states as well as this environmental coupling is given by

the density matrix. The time evolution of the density matrix is

dρ

dt
=
−i
~

[H, ρ] + L(ρ). (2.1)

Here ρ is a density matrix describing the evolution of the quantum states and H is a Hamil-

tonian and L(ρ) describes decay terms. The first part of this equation is often referred to

as the Von-Neumann equation. When L(ρ) is derived from first principles (Eq. 2.1) is often

called a “master equation”. When this equation is expanded into a matrix basis to include

all states and energies and phenomenological dephasing/population decay, the equations are

called the optical Bloch equations. The diagonal elements of the density matrix correspond

to populations (for a single atom, the probability it is excited) while the off diagonal ele-

ments correspond to coherences (the system is evolving from one state to another with a

defined phase). The conventional coherent nonlinear spectroscopy experiments discussed in

this chapter measure coherent radiation arising from the sum of the off diagonal elements of

the density matrix times the dipole transition matrix. In our experiment the signal arises

from the trace of the density matrix multiplied by the excitation matrix. As an ideal model

system consider a two level system with the density matrix

ρgg ρge

ρeg ρee

 (2.2)

where ρgg and ρee denote the population in the ground and excited states, and ρeg and ρge

are complex conjugates and denote a coherent superposition between the two states. The

properties of incoherent vs coherent states can be understood by considering the temporal

evolution of these density matrix elements given some initial conditions ρij(t = 0) and a

radiative lifetime T1 and dephasing time T2.



23

The temporal evolution of the excited state density matrix element is:

ρee(t) = ρee(0)e
− t
T1 . (2.3)

This element decays without a phase and thus characteristic of population decay. In contrast

the temporal evolution of a coherence has a phase and evolves as

ρeg(t) = ρeg(0)e
−iωt− t

T2 . (2.4)

The difference between these two cases is that coherences develop phase as they evolve

in time while populations do not. Importantly, the T1 time constant refers to dissipation of

the system while the T2 time corresponds to decoherence. The limiting relationship between

T1 and T2 is determined by the dissipation rate. Thus in a closed system the dephasing time

is

T2 = 2T1. (2.5)

This relationship can be understood intuitively and generalized by realizing that di-

agonal density matrix elements decay as ρn,n = |Cn|2e−
t
Tn where Cn is the wavefunction

amplitude and Tn is the population lifetime of state n. In contrast the off-diagonal den-

sity matrix elements correspond to ρn,m = C∗nCme
− t

2
( 1
Tn

+ 1
Tm

) and thus the factor of two

arises naturally. Generally (Eq. 2.5) does not hold as additional dephasing can occur. This

pure dephasing does not involve additional population decay. This additional loss of phase

memory can come from phonons, exciton-exciton scattering, etc and modifies the T2 time as

1

T2

=
1

2T1

+
1

T ∗2
(2.6)

where T ∗2 represents the additional dephasing. The inverse of the T2 time is often called

the homogeneous linewidth because it corresponds to the resonance linewidth in the absence

of inhomogeneous broadening.
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2.1.2 Role of Phase in Pulsed Experiments

In order to understand coherent spectroscopy in the context of MDCS it is helpful to

review Ramsey spectroscopy where the role of phase becomes clear. The textbook-picture of

Ramsey spectroscopy, is the interaction of a two-state system with two temporally separated

driving pulses. Each pulse has a pulse duration σ as shown in Fig. 2.1a. When the transition

probability of the system is plotted as a function of detuning ∆ or pulse separation τ an

oscillatory pattern is observed called Ramsey fringes [52–54] (Fig. 2.1b).

Figure 2.1: a) Ramsey pulse sequence of two pulses of width σ and detuning ∆ with inter-
pulse delay τ . b.) Plot of the two-level transition probability as a function of interpulse
delay τ . When the relative phase φ between pulses is varied the Ramsey fringes are altered.

To understand Ramsey spectroscopy, is it sufficient to consider a system initially in an

initial state |g〉 with an excited state |e〉 unpopulated. The first pulse will excite the system

into a quantum superposition between the ground and excited state which will evolve during
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τ and develop a phase as ψ = 2πδτ where δ = ve−vg is the transition frequency between the

two states. The second pulse will interrupt this evolution and subsequent measurement with

a state sensitive detector will project this superposition state into one of the two eigenstates

of the system. Critically, this projection depends on ψ, the accumulated phase, and φ, the

relative phase, between pulses as shown in Fig. 2.1b. In this sense the Ramsey fringes are

an interference pattern between which quantum states the system projects into.

In general coherent ultrafast spectroscopy is concerned with understanding and char-

acterizing coherences which are characterized by the phase evolution ψ of a quantum system.

The techniques are typically a generalization of or related to Ramsey spectroscopy. Ramsey

spectroscopy has many uses of which an important one is precision measurement [55–57].

However, in the context of this thesis its most important use is to understand and quantify

ψ and thus quantum coherence and decoherence [58–60].

In the original Ramsey pulse sequence, the rate at which the system evolved from one

state to another (the Rabi frequency Ω) times the pulse duration σ defined a phase called the

pulse area θ = Ωσ. Using a pulse area of π
2

equally weights the superposition state, while a

pulse area of π transitions the initially unexcited population into a fully excited population.

Historically, a pulse area of π
2

was used for the “Ramsey pulse sequence” but this is not a

requirement for observing Ramsey fringes as a different value will reduce the fringe contrast.

The pulse area θ is a phase that relates the weighting of the state of the system after the

pulse, while the relative phase φ deals with the phase evolution and readout of the system.

The Ramsey fringe contrast is greatly reduced if a strongly inhomogeneously broad-

ened ensemble is considered. Inhomogeneity means that each oscillator has a slightly different

transition frequency. The first pulse will put each oscillator in an identical quantum super-

position state from which they will each evolve and accumulate their own phase ψi = 2πδiτ .

It should be clear that larger transition frequencies will accumulate phase faster, and as a

result the ensemble will dephase as each oscillator accumulates an independent phase. This

will reduce the fringe contrast when the second pulse reads out the Ramsey fringes. Essen-
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tially, the fringes of Fig. 2.1b become averaged as τ increases and the read-out probability

asymptotes to 1
2
.

While this dephasing may at first glance appear irreversible, each oscillator still retains

phase even though the ensemble has dephased. If instead of the second pulse having pulse

area π
2
, it had a pulse area of π the phase evolution of the ensemble will “reverse” and

accumulate phase as ψi = −2πδit
∗ where t∗ is the time after the second pulse. At a later

time t∗ will equal τ and the ensemble will rephase emitting a ”pulse” leading to a spin-echo

in NMR experiments and a photon-echo in optics [61, 62].

These examples show that role of phase in isolated non-interacting quantum systems

and why it is critical to understanding and measuring the coherent response of quantum

systems. When vibrational, electronic or spin couplings are introduced these interactions

modify the coherences in observable ways, and it is these couplings that motivates MDCS.

2.1.3 Optical Bloch Equations and Feynman Diagrams

To calculate the optical response of a system the optical Bloch equations (Eq. 2.1) are

typically used. The Hamiltonian is typically notated H = H0 +Hint where H0 describes the

energy eigenstates and Hint describes the interacting electric field. Written explicitly for a

two level system these equations are:

˙ρ11 =
i

~
(H12ρ12 − ρ21H12)− γ11ρ11 (2.7)

˙ρ22 =
−i
~

(H12ρ12 − ρ21H12)− γ22ρ22 (2.8)

˙ρ12 =
−i
~

(H21ρ22 − ρ11H12)− γ12ρ12 − iω12ρ12. (2.9)

(2.10)

Here Hij is a Hamiltonian matrix element, ρ is a density matrix, and γij is the radiative

decay or dephasing rate from L(ρ) all indexed by i = 1, 2. For the responses measured in



27

optical coherent spectroscopy the interaction Hamiltonian Hint = −µ̂ · Ê(t) describes the off-

diagonal Hamiltonian matrix elements. The interaction Hamiltonian describes the driving

field interacting with the system and is perturbative toH0, the systems undriven Hamiltonian

that describes the diagonal Hamiltonian matrix elements. The interaction Hamiltonian is

characterized by µ̂ the dipole operator and Ê the electric field operator. For a two level

system with a density matrix given by Eq. 2.2 the dipole operators are:

µ̂ = µ0(|e〉〈g|+ |g〉〈e|) (2.11)

where µ0 represents the transition dipole moment and |e〉〈g| + c.c. are the raising-lowering

operators. Accordingly, the electric field in a Dirac delta (impulsive) approximation for n

pulses is

E(t) =
n∑
i=1

E0µ

2
δ(t− ti)(eiωL(t−ti)−iφ + e−iωL(t−ti)−iφ). (2.12)

Here E0 is the field amplitude, δ(t − ti) is the impulsive field distribution, ωL is the pulse

carrier frequency, φ is the pulse phase, and ti is the time at which the ith pulse arrives. On

comparison of Eq. 2.11 and Eq. 2.12 it is clear that the product µ̂·Ê(t) has four terms times a

pulse envelope term. A unitary transformation U = eiω0t|e〉〈e| = |g〉〈g|+eiω0t|e〉〈e| transforms

the interaction Hamiltonian into a rotating frame where only two terms are near stationary

and the other terms oscillate much faster than the transition frequency ω0. Although not

strictly valid in the impulsive limit, the rotating wave approximation is valid for Gaussian

envelopes of finite width. As the Gaussian bandwidth increases they become increasingly

better approximations of the impulsive limit; without necessarily having the bandwidth to

invalidate the rotating-wave approximation. Keeping the faster rotating terms leads to the

Bloch-Seigert shift which is rarely observed. After dropping the faster oscillating terms and

transforming back into the Schrodinger picture, the interaction Hamiltonian is
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HI = −
n∑
i

E0µ0

2
δ(t− ti)(|e〉〈g|e−iωL(t−ti)−iφ + |g〉〈e|eiωL(t−ti)+iφ). (2.13)

In the impulsive limit E(t) = E0δ(t). This convention allows us to define the Rabi

frequency Ω, that describes the rate at which the system will evolve from it’s ground state

to an excited state and vice versa. In a rotating frame the Rabi frequency is

Ω =
µ0E0

2~
. (2.14)

The Rabi frequency is a parameter that describes the coupling strength of the inter-

action Hamiltonian, i.e. ,the rate at which the system is driven from one state to the other.

This is understood since Hint only provides off-diagonal matrix elements, coupling the di-

agonal matrix elements H0 to the off-diagonal elements. Provided Hint is perturbative we

can consider the situation when there is only one pulse. Then the density matrix can be

expanded in terms of a dimensionless parameter Ω→ λΩ which can vary from 0− 1.

ρij = ρ0
ij + λρ1

ij + λ2ρ2
ij + λ3ρ3

ij + λ4ρ4
ij + ... (2.15)

Usually after the expansion λ is set to one. Odd orders in perturbation theory will

describe the polarization while even orders will describe a system’s population. In general

for resonant transition frequency ωij = ωi − ωj the perturbation expansion of the density

matrix is

ρ̇ij
(n) = −(iωij + γij)ρ

(n)
ij −

i

~
[Hint, ρ

(n−1)]ij (2.16)

where n denotes the order to which the expansion occurs. As we will see in the following

section there is a diagrammatic way to solve the OBE’s perturbativey using “Feynman

diagrams” which allows spectroscopists to analytically deal with multilevel systems and

effects like quantum interference, Raman coherences, multi-quantum coherences etc.
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2.1.4 Feynman Diagrams for the OBEs

In order to solve the optical Bloch equations analytically to some order n in pertur-

bation theory, a diagrammatic approach has been developed that allows spectroscopists to

easily capture multi-energy levels and quantum interference. Each diagram represents a

“quantum pathway” which represents how states are excited/dexcited and how these states

transfer energy. The wave-mixing signal of interest is represented by the sum of all permu-

tations of these diagrams.

For a given resonance the complex resonant frequency is denoted Ωij = ωi − ωj − iγij
(note this is not a Rabi frequency Ω). The transition dipole moment µkl represents the

transition dipole moment for the |k〉 → |l〉 transition. In the diagramatic approach to the

OBEs each pulse is assumed to be time-ordered such that each pulse is not coincident or

overlapping in time with the other pulses. In this way the response of the system for any

given pulse can be calculated independently. In the limit that each pulse interacts with

the system ”linearly” then a defined order in perturbation theory appears from the density

matrix where each pulse increases the perturbation order by one.

In this way the nth order density matrix can be calculated after the nth pulse excites

the system. Each pulse excites the system with a phase φn that does not need to be identical.

For instance, if each pulse excites the system from a particular direction φn = k̂n · x̂ or if each

pulse had a different carrier frequency then φn = ωn · t. Such phases provide Ramsey fringes

in the form of a “transient population grating” for φn = k̂n · x̂ and a temporal population

modulation for φn = ωn · t.

In order to calculate an nth order response each of these diagrams is ”stacked” with time

increasing vertically and n integrals must be evaluated. Electric fields E∗ provide ”arrows”

that point to the left (providing the conjugate action of the electric field) while electric fields

E act to the right of the diagrams (providing the non-conjugate action of the electric field).

Both conjugate and non-conjugate fields can excite or de-excite the system. Experiments
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Figure 2.2: Feynman Diagrams with their corresponding integral to evaluate the density
matrix element ρ

(n)
ij . Time increases in the vertical direction, arrows to the left indicate

conjugate phase/fields while arrows to the right indicate positive phase/fields.

will use a phase modulation or phase matching condition to select processes based on the

time-ordering of these conjugate vs. non-conjugate pulses. A common initial condition is

that the system starts in the ground state ρ
(0)
gg = 0. The primary observables in spectroscopy

are population as with Ramsey fringes or coherent light which is re-radiated in the form

of a macroscopic polarization. The macroscopic polarization P = tr(µ̂ρ̂) radiates into the

electric field Erad ∼ iP where it can be detected on a photodetector-spectrometer. In our

experiments, we measure an excitation level S ∼ tr(n̂ρ̂) as a photocurrent. The difference

in these measurements is the order of perturbation required. Both detection approaches

are interested in measuring coherences, however from Eq. 2.16 the first order correction to

the density matrix involves coherences/off-diagonal elements while second order corrections

involve populations/diagonal elements.

This creates a difference in how many diagrams need to be considered for a measure-

ment that records coherences vs populations. A measurement recording polarization up to

nth order in perturbation will have m diagrams while a population measurement will have

2m diagrams. This is understood by realizing that an additional pulse is needed to ’map’
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the polarization into a population state. However, nothing fundamental changes about the

quantum pathways or diagrams, it is simply the final state that needs to be considered.

2.1.5 Types of 2D Spectra

There are a variety of different MDCS spectra that can be obtained. The type of

MDCS spectra measured depends on the ordering of the pulse phases in Fig. 2.2. In general

there are many possibilities but in third order perturbation theory there exist primarily three

pulse sequences that are of interest due to having three pulses interact with the sample as

in Fig. 2.3. In order to generate a MDCS spectrum the signal is Fourier transformed with

respect to two of the three time axis in Fig. 2.3.

Figure 2.3: In third order MDCS three pulses are used to excite the sample, each with
relative phase φA,B,C . The time ordering of the pulses A,B,C is such that A arrives first
and C last.

The three pulses are labeled by their relative phases, if we denote the time ordering of

the pulses A,B,C where A comes first and C last then the three pulse sequences of interest

are given by:

φSI = −φA + φB + φC (2.17)

φSII = φA − φB + φC (2.18)

φSIII = φA + φB − φC . (2.19)

The SI pulse sequence refers to rephasing pulse sequences in which the first pulse

is oppositely phased with respect to the second two. Because of the opposite phase of
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the exciting pulse A relative to the next two pulse phases this pulse sequence will reverse

the coherent phase evolution created by the first pulse. For fixed T at some point τ = t

an inhomogeneously broadened ensemble will “rephase” leading to a photon echo in an

inhomogeneously broadened system.

The SII pulse sequence is a non-rephasing pulse sequence in which the first and third

pulses are oppositely phased with respect to the second. In this situation, unlike that of S1,

the second and third pulses are oppositely phased effectively causing an inhomogeneously

broadened ensemble to decay by its free induction decay.

The SIII pulse sequence is a multi-quantum pulse sequence. This name arises from the

additive nature of the first and second pulse phases. The phase evolution after the first pulse

is given by φτ = ωτ where ω is the resonant frequency. The second pulse will attempt to

“kick” the resonance again so that it accumulates phase twice as fast during inter-pulse delay

T with φT = 2ωT . For a single two level resonance this pulse sequence will provide no signal

due to destructive interference of the quantum pathways. For multi-level resonances such as

a ladder type three-level system this pulse sequence effectively creates a coherence between

the ground state and the doubly excited states. The multi-quantum coherence is particularly

useful to investigate coupling between (for instance) two-coupled two level systems because

it provides a direct probe of the coupled state.

2.1.5.1 Rephasing Spectra

A number of simulated rephasing MDCS spectra are plotted in Fig. 2.4 for model

systems. The coherent signal recorded as a function of two time delays S(τ, T, t) is Fourier

transformed with respect to τ and t. The rephasing y axis is plotted with negative frequencies

to indicate the relative phase of the first pulse −φA and the subsequent negative phase

evolution after the first pulse during time τ . The x axis is plotted with positive frequencies

to indicate the coherent evolution after the third pulse φC during time t is opposite to that

during τ . Because MDCS measures the phase and amplitude of the coherence it is customary
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to plot the absolute and real part of the MDCS as in Fig. 2.4.

Figure 2.4: Simulated rephasing absolute and real part of MDCS spectra for a variety of
physical systems. a.) The MDCS spectra of a homogeneously broadened resonances. b.) The
MDCS spectra of a inhomogeneously broadened resonance that has a photon-echo. c.) The
MDCS spectra of two coupled homogeneously broadened resonances with coupling energy
∆.

In Fig. 2.4a the MDCS spectra of a homogeneously broadened two-level system is

plotted. The absolute spectrum demonstrates absorption at the resonant energy y axis and
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emission at the same energy x axis. The real part of this spectrum 2D is characterized

as absorptive with a positive central peak along the diagonal (dotted line). Along the

cross-diagonal the real part of the spectrum has negative lobes which are an artifact of the

Fourier transform of τ from 0 → ∞ as opposed to −∞ → ∞. Methods to correct this

negative component include the correlation spectra which records both the rephasing and

non-rephasing spectra [40] restoring the range −∞ → ∞ along the τ dimension. For our

measurements this is rarely done due to concern about the phase changes that occur due to

many-body interactions [41, 63].

In Fig. 2.4b the MDCS spectra of an inhomogeneous ensemble of two-level systems

is plotted. The absolute spectrum demonstrates absorption at the resonant energy y axis

and emission at the same energy x axis. Unlike the homogeneous ensemble of Fig. 2.4a this

peak is elongated along the diagonal. This occurs because in an inhomogeneously broadened

ensemble the rephasing pulse sequence results in a photon echo. The homogeneous decay

occurs along t
′

= t + τ while the inhomogeneous decay occurs along τ
′

= t − τ . In the

Fourier transform these axis are given by the crossdiagonal and the diagonal slices [64–66];

and hence the inhomogeneity can be separated from the homogeneous linewidth [65, 67–69].

The separation of these linewidths potentially allows for coherent control of inhomogenously

broadened ensembles [70].

In Fig. 2.4c the MDCS spectra of two homogeneous interacting resonances is plot-

ted. The absolute spectrum demonstrates absorption at the two resonant energies y-axis

and emission at the same two resonant energies. However the appearance of peaks off the

diagonal line is indicative of coupling between the two diagonal resonances. In the absence

of coupling the quantum pathway destructive-interference will only provide peaks along the

diagonal. The presence of coupling will lift this destructive interference condition and pro-

vide a mechanism for energy transfer to the other states. This is visually represented by

the crosspeaks which absorb energy at one resonance and transfer it at another where it

re-radiates. The real-part of the crosspeaks can indicate the kind of coupling present. The
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two diagonal peaks appear absorptive as Figs.(2.4a-b) did, however the crosspeaks appear

dispersive with a negative wing showing up for both crosspeaks towards the bottom left cor-

ner. This dispersive profile on the cross peak is indicative of an interaction with a negative

interaction energy ∆.

2.1.5.2 Non-Rephasing Spectra

In addition to the rephasing-pulse sequence in which the second and third pulses are

phased the same way, a pulse sequence exists in which the second and third pulses are

oppositely phased. If the second and third pulses are commensurate in time then they

destructively interfere and the system decays after the first pulse by free induction decay

instead of rephasing. As a result, in this pulse sequence no photon-echo appears, the signal

decays faster than in resphasing spectra and the frequency resolution is not as good due

to this faster signal decay. Because of this, this is the least commonly studied type of

MDCS spectrum. However, it commonly used to generate correlation spectra in which the

rephasing and non-rephasing are added together to generate a purely absorptive phase profile

[40, 71]. While advantageous for reducing Fourier transform artifacts, in correlation spectra

peak oscillations can occur due to interference of the rephasing and non-rephasing spectra

[72, 73]. This interference can complicates the interpretation of the MDCS spectra and has

contributed to coherent energy transfer controversies in photosynthetic systems [72, 74–76].

In a non-rephasing pulse sequence (Fig. 2.5) both the y axis and the x axis have positive

frequencies to indicate the coherent phase evolution φ is the same after the first pulse during

time τ as after the third pulse φ = ωt. The non-rephasing homogeneous absolute spectrum

(Fig. 2.5a) of a two-level system looks quite similar to to the homogeneous rephasing spectra

(Fig. 2.4a). The differences between SI and SII appear in the real part of the spectrum

where a relative rotation of ninety-degrees occurs. The result of this rotation is that negative

side-lobes along the diagonal as opposed to off the diagonal as in the rephasing pulse sequence

(Fig. 2.4a) and the absorptive peak is cross-diagonal as opposed to along the diagonal as
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Figure 2.5: Simulated MDCS spectra for the non-rephasing pulse sequence for a two-level
homogeneous and inhomogeneously broadened resonance.. a.) A homogeneously broadened
non-rephasing spectrum. b.) An inhomogeneously broadened non-rephasing spectrum.

in the rephasing pulse sequence. Inhomogeneous broadening in the non-rephasing pulse

sequence results in free-induction decay along both τ and t and broadens the spectrum while

maintaining the same phase profile.
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2.1.5.3 Two Quantum Spectra

The multi-quantum pulse sequence is of particular interest due to its ability to probe

collective dynamics mediated through energy exchange/ many-body interactions [42, 46, 47].

The multi-quantum pulse sequences are unique as compared to the SI , SII pulse sequences

in that for resonant excitation of a two level system no signal is present due to the lack of a

second state at approximately double the excitation energy. A similar multiphoton pathway

can exist in which two pulses at half the excitation energy excite a state [77].

For resonant excitation, this pulse sequence probes the states at approximately twice

the excitation energy. This results in a requirement that the transition energy from the

ground to first excited manifold and the transition energy from the first excited manifold to

the second excited manifold be anharmonic or have different linewidths. In the context of

many-body physics the system is described as a collective ensemble and the second excitation

manifold consists of doubly excited states. As an example we consider a six-level system with

doubly-excited anharmonicities ∆i and γi as in Fig. 2.6.

In this model, there are three “red” transitions and three “blue” transitions. The state

|2〉 corresponds to a single excitation of the red “mode” and the state |3〉 corresponds to a

double excitation of the red mode. In order for the two-quantum spectra pathways to not

destructively interfere anharmonicities ∆i (resonant energy shift) and γi (excitation induced

dephasing) are assigned to the doubly excited states. The first pulse creates a coherence

between the first excited manifold and the ground state. This coherence acquires phase at

the optical transition frequency φ = ωiτ . The second pulse converts the coherences created

by the first pulse into multi-quantum coherences which acquire phase at φ = nωiτ where

n is an integer detailing the order of the multi-quantum coherence. For the case of a two-

quantum coherence n = 2. When the time after the second pulse T is Fourier transformed

this phase evolves twice as fast resulting in a frequency axis at twice the optical transition

frequency as in the y axis of Fig. (2.6).
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Figure 2.6: Two quantum absolute and real part of MDCS spectra for a six level system
with different two-body interactions. In this example the homogeneous linewidth γ0 of all
resonances is the same however there can exist additional dephasing γEID,i for the ith state
and energy shifts ∆i. In this example state |3〉 has a negative energy shift ∆3, state |4〉 has
only additional dephasing γEID,4 and state |5〉 has a positive energy shift ∆5.

In the model of Fig. (2.6) state |3〉 has a negative energy shift of 10 ueV giving the real

part of its spectra at 1400meV a dispersive profile with a negative lobe at lower energy (Fig.

2.6). The cross peaks absorbing at 2805meV and emitting at 1400meV and 1405meV are

absorptive because the doubly excited state |4〉 has increased dephasing γEID,4. The state

|5〉 has a positive energy shift of 10ueV and an increased dephasing of 10ueV resulting in a

slightly dispersive peak at 2810meV and 1405meV with negative lobe toward higher energy.



Chapter 3

Development of Multidimensional Coherent Optical Photocurrent Spectroscopy

A common technique to study the ultrafast coherent evolution of a chemical or semi-

conductor system is a multi-pulse four-wave mixing (FWM) experiment. These techniques

have been used extensively in semiconductors [78–80] to study the coherent response of exci-

tons and quantum dots. In these experiments, optical coherences are measured as a function

of inter-pulse delays.

Most FWM techniques are only sensitive to the magnitude of the coherent evolution

of quantum states and do not record phase information. Therefore, the real and imaginary

components of the complex FWM signal are unknown. To correctly disentangle these com-

ponents, both the amplitude and the phase of the FWM signal need to be recorded as a

function of inter-pulse delay. Then, the Fourier transform of the inter-pulse delays can be

taken to generate an optical spectrum. By taking the Fourier transform with respect to two

or more time delays, a multidimensional coherent spectrum can be generated.

Multidimensional coherent spectroscopy is not a new concept as it was first applied

to Multidimensional Nuclear Magnetic Resonance (MD-NMR) experiments by Ernst [81].

The difference between the NMR and the optical regime is the comparative difficulty in

measuring the phase. NMR experiments are conducted in the radio frequency regime where

electronic instrumentation allows for precise control of the exciting pulses and where long

dephasing rates allow radio-frequency detection to time resolve the emitted signal.

In contrast, optical experiments typically operate in an ultrafast regime, ∼ps, where
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electronics are not fast enough to resolve the emitted signal and square law detectors are

insensitive to the phase. Additionally, the most important complication in the optical regime

is phase-noise between pulses induced by interferometric fluctuations greater than λ
100

that

degrades the phase measurement. In the last 18 years a variety of techniques have emerged

both for vibrational and electronic spectroscopy that surmount these difficulties. In that

time MDCS has proven to be one of the most powerful techniques for extracting information

about the coherent evolution of quantum states [4, 10, 47, 82].

In this chapter, I discuss our development of a new way to record MDCS signals.

The goal of our experiment was to bypass the limitations of standard, non-collinear FWM

techniques to build an experiment suitable for studying single nano-objects. We achieve

this by performing a type of dynamic phase cycling and recording an incoherent signal as a

photocurrent. This approach has intrinsic phase stabilization due to our modulation scheme,

allowing us to record both quadratures of a FWM signal while achieving long interpulse

delays. We were able to successfully demonstrate MDCS on a single quantum well using this

approach, we then used this setup for all other experiments discussed in this thesis.

3.0.1 Standard FWM Techniques for MDCS

Most methods for performing ultrafast FWM rely on non-collinear momentum/phase

matching. A prototypical approach is to perform a time-integrated two-pulse measurement

as shown in Fig. 3.1a. This experiment closely resembles a pump-probe experiment. In

this experiment the first pulse A excites a sample while a pulse B excites the sample after

some delay τ . The time delay τ is precisely stepped by a translation stage and the system

response is recorded as a function of this delay. At each step of τ the signal is emitted in a

background free direction ks = −kA + 2kB and recorded on a detector.

More elaborate FWM geometries often break pulse B into two pulses so that an in-

teraction involves, pulse A,B and C. This provides a variety of phase matching conditions

such as
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kSI = −kA + kB + kC

kSII = kA − kB + kC

kSIII = kA + kB − kC .

Figure 3.1: Different phase-matched FWM geometries. A two pulse experiment would resem-
ble (a) in which the second pulse acts twice, while a three pulse experiment would resemble
(b) in which each pulse drives the system linearly. The emission time for the signal S is t
while the inter-pulse delays are τ, T

The implementation of a three-pulse FWM experiment Fig. 3.1b makes it easier to

isolate these different phase matching conditions [4, 83]. This isolation is important as de-

pending on this phase-matching condition the quantum coherences will evolve with different

phase and exhibit different physics. For instance in an inhomogeneously broadened system

the SI signal will give rise to a ”photon echo” while the SII signal will not. Because of this

difference the SI signal is capable of isolating the homogeneous line width from an inhomo-

geneous system while the SII is not [64, 65]. Just as in the two pulse version the signal is

recorded as a function of interpulse delay.
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In order to achieve a MDCS spectrum any of the above non-collinear techniques may

be chosen as long as the signal is heterodyned with a local oscillator. The central problem

in phase-resolved optical FWM is the issue of pulse-pulse phase stabilization. If any pulse

acquires independent phase noise this will get mapped onto the coherent evolution of the

quantum states and appear as a “real” phase when in fact it is just noise. If this noise is larger

than a π phase , then the phase is completely unrecoverable. The standard requirement to

claim phase resolved FWM is phase stabilization between pulses ∼ λ
50

. Typical phase noise

arises from interferometer fluctuations due to mechanical vibrations. These interferometer

fluctuations are on the order of 100 nm. Given λ ∼ 800nm the required interferometer

stability is (8 − 16)nm. Addressing this issue requires either pulse shaping methods [84,

85] to achieve pulse-pulse phase stabilization, elaborate interferometer locking techniques

[4, 83, 86] or the careful manipulation of wavefronts [87]. In the pulse-shaping case beam

A is pulse shaped into two phase-locked beams with variable delay and the probe field acts

as a local oscillator heterodyning with the signal. For the case of locked interferometers a

local oscillator goes around the sample and heterodynes the emitted field. In this situation

additional protocols must be followed to properly phase the FWM signal [88].

All of the above techniques rely on wave vector selection to isolate a FWM beam from

other signals in the far field. This approach works for 3D systems such as dense atomic

vapors, 2D systems such as quantum wells or dense ensembles of quantum dots. What 3D

and 2D systems have in common is translational symmetry that allows for the formation of

a beam in the far field. Single nano objects such as quantum dots, atomic-force microscope

tips, and other single nano objects radiate as point sources preventing the formation of a well

formed beam in the far field. Prior to our implementation, only two other FWM experiments

were suitable for studying single nano objects [45, 48, 82]. One of these experiment makes a

variety of assumptions about the phase evolution of the FWM signal in order to phase the

spectrum. The other experiment is limited to studying surfaces with a few hundred fs time

resolution.
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In addition to non-collinear approaches there are two previous approaches to collinear

population-readout MDCS. The first relies on a static phase modulation scheme, where

the phases of three exciting pulses is modulated to coherently subtract out unwanted signal

pathways from the MDCS signal. For the signal measurement, instead of an emitted coherent

field, an incoherent photoluminescence is collected. In this way the second pulse acts as

pulses B and C from the non-collinear schemes (Fig. 3.1a) while the third pulse converts the

coherent signal into a population state; where it is read out as photoluminescence [43, 89] as

shown in Fig. 3.2a. The second approach uses four collinear pulses A,B,C, and D and uses a

dynamic phase cycling/modulation scheme to phase 2D spectra. Like the static scheme the

coherence after pulse C is converted into an incoherent photoluminescence signal. However,

in this scheme this incoherent signal is modulated at a specific detection frequency [90, 91]

as shown in Fig. 3.2b.

3.0.2 Coherent Optical Photocurrent Spectroscopy

Inspired by the dynamic phase cycling schemes of [26, 90, 91] we implemented a dy-

namic phase cycling experiment [92] for performing multidimensional coherent optical pho-

tocurrent spectroscopy (MD-COPS) using photocurrent as an incoherent detection signal.

The reason for this approach arises from a desire to record dephasing times ∼ 1ns in semicon-

ductor single quantum dots and other nano-objects. Our experimental parameters preclude

the use of pulse shaping, wavevector matching geometries and luminescence collection. Pulse

shaping methods are limited to ∼ 10ps coherence times. Wavevector selection fails due to

the lack of translational symmetry. Due to the index of refraction contrast between a semi-

conductor and air we expect that the incoherent, isotropic luminescence collection efficiency

from a semiconductor to be poor. Furthermore, an intrinsic advantage of our approach is

the realistic response of optoelectronic devices such as solar cells and and optical detectors.

In this perspective a variety of single-nano objects have been embedded in Schottky or p-i-n

diodes and studied with photocurrent spectroscopy. They include quantum wells [93, 94],
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Figure 3.2: Different collinear FWM geometries. A three pulse experiment using static phase-
cycling would resemble (a) in which the second pulse acts twice. A three pulse dynamic phase
cycling experiment would resemble (b) in which each pulse drives the system linearly. In
these schemes the polarization emitting after pulse B/C gets mapped onto an incoherent
population with pulse C/D. The FWM signal is recorded as a function of inter-pulse delays
τ, T, t

single and many quantum dots [95–103], quantum dot molecules [24, 104, 105] and carbon

nanotubes [106].

Our experiment [92] consists of four excitation pulses A,B,C,D labeled in chrono-

logical order with A first as shown in Fig. 3.3a. The four pulses are prepared using two

Mach-Zehnder interferometers nested within a larger Mach-Zehnder interferometer. Each

interferometer contains a delay stage used for precisely stepping the interpulse delays (Fig.

3.3b). In each interferometer arm an Acoustic Optical Modulator (AOM) is driven by a

phase locked direct-digital synthesizer (DDS). An AOM provides a radio-frequency defined

diffraction grating due to the strain caused by a propagating acoustic wave. Thus unlike

a typical diffraction grating the scattered light is doppler shifted by an integer times the

driving frequency of the AOM. In each arm we take the 1st order diffracted beam and spa-
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tially block the other diffraction orders. Each AOM is driven by a different and unique radio

frequency ωi with i = A,B,C,D on the order of 80 MHz. Using different radio frequencies

(RF) therefore shifts each excitation pulses carrier frequency differently as ω
′
c,i = ωc + ωi.

This frequency shift is insignificant compared to the optical carrier, but it’s effect on the

relative pulse trains between interferometer arms is significant. The linear and nonlinear

signals recorded will occur at the “beatnote” between different pulse trains tagged by these

radio frequencies.

Figure 3.3: Experimental Apparatus for multidimensional photocurrent spectroscopy. a.)
Shows the experimental pulse sequence with inter-pulse delays τ, T, t. The FWM signal is
electrically collected in the form of a photocurrent. b.) The interferometer design of COPS
experiments relies on four AOM’s driven at unique and different frequencies. A CW laser
propagates through the experiment spatially offset from the principal axis and is detected on
reference detectors Ref 1, 2, 3. This beatnote is sent as a reference to the lock-in detection
signals where it is used for demodulation.

At the same time a reference continuous-wave laser is sent into the interferometer offset

from the principal axis. This laser samples all of the same interferometer fluctuations that
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the mode-locked pulse trains sample since it is incident on the same optics. The reference

laser beatnotes from each interferometer are detected on three reference detectors; where

they are then mixed and sent as a reference for lock-in detection. Because of our modulation

scheme the interferometer noise is removed as will be discussed in the following sections.

3.0.3 Dynamic Phase Cycling

In MDCS the FWM signal can be extracted from “static” phase cycling in which

consecutive measurements are taken with different phase shifts applied to the exciting pulses

[43, 48, 89, 107]. In our scheme each AOM is driven with a unique and different frequency.

The beamsplitters make identical copies of the laser pulse train in each interferometer arm.

Each AOM in each interferometer arm, with its unique driving frequency, then shifts the

pulse-train carrier frequency so that they have non-identical carrier frequencies. The effect of

this is to create a dynamic pulse to pulse phase cycling. Before entering the interferometers

the pulse train is

∑
n

E(n, t∗) = a(t∗ − nTrep) cos (ω0t
∗) (3.1)

where Trep = 1
frep

where frep is the laser repetition frequency ∼ 76MHz, t∗ is a real

time, and w0 is the optical carrier frequency. This carrier frequency ω0 is given by ω0 =

2π(Nfrep + fce) where N is an integer and fce is the carrier offset frequency. When frep and

fce are stable the pulse-train can be thought of as a frequency comb [108]. The carrier offset

frequency is due to a difference in group and phase velocities in the oscillator cavity and

results in an intrinsic phase cycling in the pulse train i. This intrinsic phase cycling is given

by ∆φi = (ωi + 2πfCE)Trep.

When this pulse train enters the interferometers each pulse in this train is split into

four identical copies. If we consider the nth pulse in interferometer arm i = A,B,C,D after

going through the AOM it can be written
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E(n, t∗)i = a(t∗ − nTrep) cos (ω
′

it
∗) (3.2)

where ω
′
i is shifted carrier frequency. The shifted carrier frequency is given by ω

′
i = ω0 + ωi

where ωi is the AOM driving frequency. Thus pulses in interferometer arm i develop a unique

carrier frequency determined by the AOM driving frequency. When comparing the nth pulses

in interferometer arms i, j a clear pulse-to-pulse phase develops as

∆φi,j = ω
′

i − ω
′

j = (ωi − ωj)(nTrep). (3.3)

With this in mind it becomes clear that each pair of pulses does not excite a sample the

same way as the previous pair. The cycling frequency is given by the difference in the

interferometer AOM driving frequency. The time domain picture of this process can be

visualized in Fig. 3.4 for all four pulses.

An equivalent but different view of the phase cycling process is to consider the process

in the frequency domain. In this picture the Fourier transform of a train of pulses is a

frequency comb [108]. The AOM’s shift each comb line by the AOM driving frequency. The

“cw” comb lines can then beat in time with the other interferometer arm’s comb lines which

are shifted by the AOM driving frequency in its arm as shown in Fig. 3.5. This analogy is

particularly helpful as it is analogous to how the reference laser beat note is generated.

3.0.4 Phase Stability and the Rotating Frame

For MDCS recording the phase of the FWM signal is critical. Generally, interferometer

fluctuations scramble the phase of the FWM signal. Our approach to phase stability is to

send a reference cw laser through the interferometers offset from the principal optical axis.

The AOM’s give the cw laser in arms A,B,C,D a relative frequency shift determined by

the AOM driving frequency. The beatnote between the cw lasers is then collected on an the

reference photodiodes (Fig. 3.3b). This cw laser samples the same interferometer fluctuations
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Figure 3.4: Time domain picture of dynamic phase cycling. On top of the intrinsic phase-shift
of a mode locked laser due to its carrier offset frequency each interferometer arm acquires
a new carrier frequency. This relative difference in carrier frequencies causes a pulse-pulse
phase shift to develop between interferometer arms due to non-identical carrier frequencies.
The rate at which the phase cycles is given by the difference in AOM driving frequencies.
Here the interpulse delays τ, T, t have been set to zero. This figure is from [92].

as the primary pulsed laser system; and thus can be used to demodulate and remove those

same interferometer fluctuations. A simple example of this can be understood by considering

linear absorption in a two level system using two pulse trains in interferometer arms A,B

and with a photocurrent readout of the population.

The two pulse trains (Eq. 3.2) from arm A,B in a delta-function limit are,
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Figure 3.5: Two-pulse frequency domain picture of dynamic phase cycling. In the frequency
domain the modulation scheme can be understood as the beating between each pair of comb
lines shifted by the relative AOM frequencies. The comb line spacing is separated by the
repetition rate of the laser. The comb lines in arm i are separated from the comb lines in
arm j by the AOM difference frequency. Here the inter pulse delays τ, T, t have been set to
zero.

EA = ei(t
′−t1+nTrep)ω

′
Aδ(t

′ − t1) + c.c. (3.4)

EB = ei(t
′−t2+nTrep)ω

′
Bδ(t

′ − t2) + c.c. (3.5)

(3.6)

where t
′

= t∗ − nTrep is the real time τ is the pulse-pulse delay and ωA,B are the

shifted carrier frequencies. The linear absorption (photocurrent) signal will correspond to

the response of the system encoded as a phase times a modulation term. The expression for

the signal (ignoring the pulse train) is

S = DC + A
−µ2

4~2
e−γ11(t−t2)e−i(ω01−iγ01)τθ(τ)einTrep(ωA−ωB) + ... (3.7)

where γ11 is the lifetime of the system, γ01 is the dephasing time, ω01 is the resonant

frequency, µ is the transition dipole, DC corresponds to signals generated by one pulse acting
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twice and A is a constant that provides units of current. Note the DC term is actually at

the repetition frequency of the laser but slow electronics effectively low pass this frequency

to DC. The generated two-pulse signal is shown by Fig. 3.6.

Figure 3.6: Two-pulse picture of COPS modulation signal for fixed inter-pulse delay τ . Note
that the carrier frequency is much slower than the optical frequencies and that the signal is
not centered around zero. The DC contributions come from each pulse acting twice.

Our detection scheme records this signal in a sample as a photocurrent where it is

amplified and sent to a lock-in amplifier. In our experiment the cw laser is used to generate

a lock-in reference that measures interferometer fluctuations. The cw fields in arms A,B

develop a phase as

Eref,A = ei(t
∗−τ)ωref,A + c.c. (3.8)

Eref,B = ei(t
∗)ωref,B + c.c.. (3.9)

Here Eref,A,B is the reference laser’s electric field in arm A,B, and ωref,i = ωref + ωi

which corresponds to the shifted reference laser frequency in each interferometer arm. The

beatnote signal Sref between the two cw lasers is given by Sref ∼ [2 + 2 cos ((ωref,B−

ωref,A)t∗ + ωref,Aτ)]. This beatnote occurs at the AOM difference frequency in arms A,B.
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The lock-in reference input triggers on the rising edges of this reference signal and will

essentially discard the DC component.

Subsequently the input signal (Eq. 3.7) is demodulated by using this reference. The

demodulation process moves the AC signal components to DC and the DC signals to AC.

The final signal processing step is to low pass the demodulated signals. The end result is a

signal of the form

Sdemod ∼ A(τ) cos (τ(ωref,A − ω01)) + IA(τ) sin (τ(ωref,A − ω01)). (3.10)

The differential phase evolution as a function of inter-pulse delay φ = (ωref,A − ω01)τ

corresponds to measuring our FWM signal in the frame of the reference laser (a rotating

frame). Because of the dual-quadrature nature of the measurement the complex signal can

be recorded as a function of τ and Fourier transformed. This measurement requires that at

each step phase stability is maintained. The signal error due to interferometer fluctuations

∆τ is

∆S2 = e−2γτ (γ2 + (ω0 − ωr)2)∆τ 2. (3.11)

This signal error equation relates the total signal error. For MDCS we are primarily

concerned with the phase error which is ∆φ = (ω0 − ωr)∆τ . We recorded the fully sampled

interferometer fluctuations at a fixed τ for each interferometer by setting ωr = 0 (an electronic

reference) and observed path fluctuations ∼ 70nm as shown in Fig. 3.7a. A significant

improvement is recorded when the interferometers are completely covered in order to prevent

fluctuations (Fig. 3.7b) with the fluctuations dropping to ∼ 14nm. For signals measured

in our experiment it is advantageous to have the reference laser near-commensurate to the

optical transition wavelengths ∼ 10nm. For an interferometer fluctuation ∼ 100nm and

(ω0 − ωr) ∼ 10 THz the accumulated phase error is ∼ 1.1◦ degrees.

Similar derivations can be worked out for our nonlinear-FWM schemes however there
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Figure 3.7: a.) Interferometer stability for each interferometer arm τ, T, t. This was recorded
by using an electronic reference to demodulate the signal as opposed to an optical reference.
b.) Interferometer stability for interferometer arm t with and without a cover on the exper-
iment to dampen air fluctuations.

is an additional complication with respect to generating a reference signal for nonlinear

signals. Our cw reference laser is not of sufficient intensity to generate nonlinear wave-

mixing and therefore cannot directly generate a reference signal. In order to generate an

appropriate reference we mix the linear output of two detectors REF 1, 2 (Fig. 3.3b) using

single-side band mixing in a digital signal processor (DSP). Our mixing algorithm is to input

the difference frequency beatnotes ωref,AB = ωref,A − ωref,B and ωref,CD = ωref,C − ωref,D
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and Hilbert transform them. A Hilbert transform shifts the phase of positive frequency by

π
2
. In doing so we are able to obtain the in-quadrature cos (ωref,ij) and in-phase components

sin (ωref,ij) for the input beatnotes. We make use of the identity

cos (ωref,AB ± ωref,CDt∗) = cos (ωref,ABt
∗) cos (ωref,CDt

∗)∓ sin (ωref,ABt
∗) sin (ωref,CDt

∗)

(3.12)

to generate reference signals at the FWM beat frequencies

ωref,S1 = ωCD − ωAB (3.13)

ωref,S2 = ωCD + ωAB (3.14)

(3.15)

for the resphasing (S1) and non-rephasing (S2) FWM signals. Using detector REF

3 we can also generate the n-quantum reference beatnotes after appropriate mixing and

filtering. The use of frequency instead of wave-vector selection enables the simultaneous

measurement of multiple FWM signals by using two lock-in detectors. The phase stability

after the simultaneous measurement of S1 and S2 is shown in Fig. 3.8 where it is clear the

demodulation process has effectively stabilized the interferometers ∼ 5nm.

3.0.5 Fourier Transform Spectroscopy: Physical Undersampling, Bandwidth

and Resolution

An intrinsic advantage to our measurement approach is that we measure in a rotat-

ing frame, providing a “physical” undersampling to our signal. This is in contrast to more

conventional methods of MDCS where the signal is measured relative to zero frequency. As

a result of those conventional approaches it is a common to require very precise delay step-

ping. This is often achieved via birefringent delay lines [109] or with mechanical stages that
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Figure 3.8: FWM Stability for fixed interpulse delay τ, T, t. Average fluctuations of both
FWM signals is ∼ 4nm

step with a reference oscillators fringe spacing [4, 83]. This approach requires unnecessary

bandwidth for fully-sampled signals ∼ 800THz which is significantly more than that of a

100fs pulse ∼ 20THz. In a rotating frame, to fully sample a signal the bandwidth require-

ments are relaxed and the stage stepping can be much larger ∼ 10um vs ∼ 150nm for fully

sampled signals. Previous approaches to MDCS [90, 91] implemented their reference signal

by temporally broadening their excitation pulses and using the beatnote between them as a

reference. The frequency resolution in that approach is limited to ∼ 1
10ps

determined by their

monochromator resolution. In our approach using an external cavity diode laser [92], the

frequency resolution is limited to the linewidth of the external cavity diode laser 1−100MHz

and the mechanical delay stages length. The use of an auxiliary cw laser is particularly

advantageous for studying quantum dots [110, 111] and other long coherence time objects.

3.0.6 Signal Amplification

A consequence of a photocurrent implementation to MDCS is that the measured signal

to noise is not decoupled from the device physics of the sample. Issues such as device



55

capacitance create non-ideal current sources, reducing the electronic bandwidth and adding

additional noise due to impedance mismatch of the device and amplifier. Typically, an

electronic amplifier is necessary for sensitive measurements of single nano-objects such as

quantum dots [97, 100]. The issue of how to amplify or enhance weak electrical signals is an

area of active research [103, 112–117] with no standard solution. Here we briefly discuss the

model for a photodiode and the amplifier solution we implemented based off of bootstrapping

concepts [118, 119].

Figure 3.9: The model for a photodiode. This model consists of the signal current Ip gen-
erated by incident light, CD the junction capacitance, RD the shunt resistance and RS the
parasitic resistance. Figure originally from [118].

The model of a photodiode is shown by Fig. 3.9. This model consists of a consists of

the signal current Ip generated by incident light, CD the junction capacitance, RD the shunt

resistance and RS the parasitic resistance. The shunt resistance RD represents the resistance

of the zero-biased diode junction and is usually (and ideally) large to the point of ignoring

it. The parasitic resistance RS represents the series resistance of the semiconductor material

and the contacts and is often small in commercial diodes, but larger in our research-grade

samples and should be considered. The junction capacitance represents the complicated

capactive behavior of diodes varying with both the area of the diode and the diode voltage.

Larger diodes such as in our samples have larger junction capactiance which causes band-
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width, stability and noise issues in our experiments. Standard tricks to reduce the sample

capacitance, such as reverse biasing a diode are not available to our experiments. The reason

is that large reverse biases would cause tunneling of electrons/holes out of their respective

quantum wells. Indeed we typically forward bias our samples to provide the smallest electric

field possible while maintaining a field strong enough to collect charges.

In our samples, which were double quantum wells embedded in a p-i-n diode, the

sample capacitance was very large due to the surface area of our diodes. Thus we estimated

our sample capacitance to be on the order of 1µF leaving our current source with a source

impedance ∼ 5 kOhm. In a traditional transimpedence amplifier the noise gain NG =

1 + Rfeedback/Rsourcewith a 1MOhm feedback resistor for our sample would be on the order

of 230. This noise gain completely dominates the Johnson and shot noise. The amplifier

noise is given by NG ∗ Vnoiseamplifier with Vnoiseamplifier ∼ 5 − 10 nV
Hz.5

. In order to deal

with this issue we implemented the bootstrapping scheme of [119] (An application note on

the LTC6244 operational amplifier). This circuit makes use of an ultra-low voltage noise

JFET ∼ .8 nV
Hz.5

to “drop” this large sample capacitance across the gate-source voltage of the

JFET. The feedback resistor is then looking back into the JFET capacitance, some parasitic

capacitance and the op-amp capacitance ∼ 10pF. Thus our source impedance is converted

into a current noise as

Icnoise = VnoiseJFET/Zcapacitance = 150
fA

Hz.5
. (3.16)

This current noise is subsequently multiplied by the feedback resistor providing noise

of ∼ 150 nV
Hz.5

. Effectively though, the amplifier voltage noise has been replaced with the

JFET voltage noise providing a factor of ∼ 10 improvement. While not discussed here this

approach also dramatically improves the amplifier bandwidth from ∼ 50kHz to ∼ 350kHz.

The total noise of the amplifier can be calculated as:
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Figure 3.10: Our bootstrap implementation and other circuitry such as the digital signal
processing. The circuit implementation makes use of a ”bootstrap” design to isolate and
deal with sample capacitance. Figure from [92].

Vnoise =
√

(IcnoiseRF )2 + (IshotRF )2 + V 2
Johnson,Rf ∗BW (3.17)

where Ishot is the shot noise of the photocurrent, VJohnson,Rf is the feedback resistor and

BW is the measurement bandwidth. Of course this is not the total noise in the system, this

is merely the circuitry noise generated prior to the modulation discussed above. A full noise

calculation should take into account the 1
f

noise of the lock-in amplifiers, the interferometers,

the delay between signal and reference and dark current.

Another issue that arises is that of population decay. Standard FWM techniques probe

the lifetime of a quantum state by measuring SI spectra as a function of T . In a diode with

photocurrent readout, this approach is only sensitive to the charge lifetime in the device (i.e.

the device bandwidth) and not the actual quantum state lifetime.
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3.0.7 Demonstration of MDCS using a Photocurrent Readout

In order to demonstrate our technique we measured FWM signal from In0.2Ga0.8As/GaAs

double quantum wells embedded in a p-i-n diode. The sample consists of a 4.8nm thick QW

and a 8nm thick QW separated by a 4nm barrier. A bottom contact of Au-Ni-Ge was de-

posited on the n-doped substrate while a top contact consisting of 5nm Ti and 200nm Au

was deposited on the top. The quantum well resonances were recorded at ∼ 920nm and

∼ 950nm. This made simultaneous excitation of both quantum wells impossible with our

laser bandwidth of ∼ 10nm. We excited the lowest energy excitonic quantum well structure

with a total power of 250µ W and a ∼ 5µm spot. Our photocurrent signal was split into

two and fed into two lock-in amplifiers as shown in Fig. 3.10.

After recording the non-rephasing and rephasing signals as a function of interpulse

delay τ, t the SI(τ, T = 200, t) and SII(τ, T = 200, t) signals were measured and fast Fourier

transformed to generate a MDCS spectra as shown in Fig. 3.11. The absolute spectra (Fig.

3.11 a-c) show a slightly elongated peak on the diagonal. The real spectra (Fig. 3.11 b-d)

are phased by removing the phase offset at (τ = 0, T = 200, t = 0) from the spectra. The

spectra show a typical absorptive spectrum.
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Figure 3.11: Photocurrent detected MDCS spectra plotted as a function of ~ωtau (y-axis) and
~ωt the (x-axis). a). Absolute value of non-rephasing SII(~ωτ , T = 200, ~ωt). b).The real
part of the SII(~ωτ , T = 200, ~ωt) spectra. c). Absolute value of non-rephasing SI(~ωτ , T =
200, ~ωt). d).The real part of the SI(~ωτ , T = 200, ~ωt) spectra.



Chapter 4

Theoretical Modeling of Collective Systems

Many systems are composed of indistinguishable constituents, however discussing these

individual constituents is not always helpful to understanding all of the dynamics or prop-

erties of interest. In such systems the individual constituents are said to be behaving col-

lectively. Collective dynamics are a hallmark of both cold atom and many-body systems,

and with appropriate engineering these dynamics are increasingly accessible with solid-state

superconducting circuits.

In atomic systems, collective dynamics can be achieved via confining a gas of atoms

to a region smaller than an optical wavelength. This is known as the Lamb-Dicke regime

[120–124] and it achieves uniform coupling of each atom to the electromagnetic field in an in-

distinguishable fashion with respect to photon emission. This coupling leads to superradiance

in which dipole correlations build up as an initially excited system begins to spontaneously

decay. This collective effect results in an enhanced spontaneous emission rate that is N

times faster than the spontaneous emission rate of a free-space atom [123]. The Dicke model

serves as a basis for understanding many collective systems, and the advent of atom-cooling

has opened up new regimes of collective physics [125–127] including a previously unobserved

Dicke phase transition [128].

In semiconductors, the band edge optical response is dominated by excitonic physics.

The exciton is a composite boson characterized by the Coulomb binding of an electron-hole

pair. The spectrum of the exciton manifests as a series of hydrogenic transitions below the
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single particle band-gap energy. The Coulomb interaction also enhances the band-to-band

transition strength by ensuring that the exciton is a collective quasiparticle. The collective

behavior is best understood in the relative coordinate of the bound electron-hole pair where

the hydrogenic wave function of an exciton is coherently distributed across the the band

edge electron-hole states. By distributing excitations across many electron-holes states, the

Coulomb interaction allows excitons to manifest collective attributes such as an enhanced

dipole transition moment relative to that of just a single electron-hole transition moment as

well as a superradiant decay in thin-film semiconductors [129–132].

Superconducting circuits have slowly built up the capability to create artificial microwave-

regime two level systems through Josephenson junctions [133, 134]. By carefully engineering

these qubits to be identical, collective dynamics have recently been achieved [135, 136].

Here we discuss collective coherent states composed of constituent two level systems.

This presentation is motivated in two ways. First, the excitons and exciton-polaritons studied

in this thesis constitute collective quasiparticles. Therefore we wish to establish a clear

relationship between collective coherent states and excitons. Additionally, a satisfactory

description of wave-mixing in a collective system, which explains the role of level truncation,

many-body interactions and the collective dipole has not been established. This description

should be related to both fermionic and bosonic models of exciton dynamics. Towards this

end, we have extended existing theory to consider wave-mixing experiments in collective

systems of constituent two-level systems. Our model can incorporate collective dipoles,

explain how truncation can qualitatively match experiments and incorporate many-body

interactions through a simple counting argument. We discuss certain limits to relate the

model to fermionic and bosonic models of exciton dynamics. The issue of level truncation

relates to the inability of a calculation to account for all states in a semiconductor due to the

sheer number of them and causes truncation error in calculations. Importantly, we discuss

physics beyond level truncation and how we expect our model can account for many-body

effects that have previously been put in by hand.
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Our discussion is organized as follows.

• We consider a simple two-level system driven by a pulse of electromagnetic radia-

tion. We calculate the excitation properties of the system and consider effects that

cause a variance in the polarization after the pulse. The causes of polarization vari-

ance include non-uniform excitation for an ensemble of two-level systems as well as

statistical uncertainty.

• Secondly, we consider simple product states and discuss the two-level system picture

for semiconductor excitons. We explicitly consider the averaging process in a product

state basis and discuss the effect of the product basis on the dipole moment and

wavefunctions.

• Thirdly, using the results from the previous section we develop a simplified excita-

tion basis for two two-level systems. This exercise is performed in order to provide

physical intuition for the process discussed in the fourth section.

• Fourthly, we develop a generalized excitation basis after an excitation pulse for the

exciton. We relate these states to the coherent collective states of atomic physics

and discuss limits in which basis appears “fermionic” versus “bosonic”.

• Fifthly, we explicitly consider a transformation of fermionic operators to bosonic

operators for a collective ensemble. We arrive at a single-mode Hamiltonian that is

equivalent to the single-mode bosonic-exciton Hamiltonian derived from the Wannier

approximation in semiconductors. This Hamiltonian is functionally equivalent to

the Dicke Hamiltonian for a collective ensemble of atoms, however it is has been

modified to ensure the crystal vacuum of a semiconductor is correctly represented.

We explicitly calculate the enhanced dipole moment in our model and then provide

an estimate for N
A

the density of electrons that the exciton is distributed over.



63

• Sixthly, we consider the perturbative excitation of our model and find that the den-

sity matrix is non-perturbative in pulse-areas as the number of states becomes large.

The density matrix is found to be non-perturbative despite the polarization remain-

ing in a perturbative regime. We further find that the perturbative polarization can

be correctly calculated from an expansion of the first few non-perturbative density

matrix elements. We resolve this issue analytically and find that symmetry in the

excitation ladder allows higher lying density matrix to provide the same polarization

as the first few density matrix elements. This symmetry results in what is effectively

a many-term polynomial approximating a few-term polynomial over a finite regime.

Several limits are taken in order to resolve this and provide a physical intuition as

to what states are actually contributing to the polarization.

• Seventhly, we numerically evaluate the polarization in the presence of many-body

interactions. Our many-body model is motivated by simple counting arguments. We

find that the results of our numerical calculation in combination with our analytical

results justifies using a truncated level scheme in order to model collective systems.

• Finally, we consider a second interference effect that arises due to the methods used

to measure wave-mixing in collective systems. We attempt to motivate how the

previous calculations will differ from measurements by considering this process.

4.0.1 Pulsed Excitation of Ensembles of Two-Level Systems

Consider a initially unexcited N = 1 two-level system (TLS), where N represents

the size of the ensemble, driven by a pulsed electromagnetic field, specifically a laser pulse

of “short” duration. Here “short” means that the pulse interacts with the system in an

impulsive limit. We calculate the excitation probability from the pulse area theorem, which

accounts for the changing Rabi frequency Ω(t) = µ
~E(t), where E(t) is the pulse amplitude

and µ is the transition dipole moment, throughout the pulse duration. This approach leads
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to the concept of a phase known as the pulse area

θ =

∫
t′

Ω(t
′
)dt

′
. (4.1)

Since the Rabi frequency describes the rate at which the TLS evolves from unexcited to

excited and vice versa, this phase determines the probability of finding the TLS excited after

the driving pulse has passed. The density matrix, ρ, immediately after this driving pulse is

[137],

ρ =

 cos
(
θ
2

)2
eiφ cos

(
θ
2

)
sin
(
θ
2

)
e−iφ cos

(
θ
2

)
sin
(
θ
2

)
sin
(
θ
2

)2

 . (4.2)

The probability of the single TLS being excited is Pe = sin
(
θ
2

)2
, while the probability

of the TLS remaining unexcited is Pg = 1−Pe. Immediately after the driving pulse the TLS

will have a polarization p = tr(ρ̂µ̂) and a phase φ determined from the incident radiation

pulse. If the ensemble is rescaled to arbitrary N the macroscopic polarization is the average

of these polarizations

P = N〈p〉 (4.3)

as depicted in Fig. 4.1a for N = 2.

If each ensemble of TLS was excited non-uniformly, a variance in P will exist. This

variance de-correlates the emitting dipoles and recovers the usual result that the response

to driving radiation is determined by the response of the individual TLS in the ensemble

(No collective effects). This variance can be understood to be creating an inhomogeneous

distribution of polarization vectors. In atomic systems this variance can be caused by a

relative phase across a spatially extended gas [122] while in excitonic systems this variance

can be caused by disorder [131].
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Figure 4.1: a.) Two independent TLS. b.) The product basis of two TLS. c.) An excitation-
basis energy structure formed from two TLS. with excitation energy modified by the exciton
binding energy. d.) An excitation-basis energy structure for all electron-hole transitions with
excitation energy modified by the exciton binding energy.

However, in the limit that each TLS in the ensemble is excited uniformly collective

effects appear and the concept of a collective Bloch vector becomes applicable [122, 137, 138].

The collective Bloch vector is the tip to tip addition of the Bloch vectors of the individual

TLS that occurs when the vectors are the same amplitude and phase. The collective Bloch

vector describes the state of the ensemble and not of an individual TLS. In this regime a

statistical dispersion in how many TLS are excited appears due to the size of the ensemble

itself. To understand this dispersion we consider the case where N is arbitrary and fixed

and the field excites each TLS in the same way. This ensures the probability of any TLS

becoming excited is the same. We then consider how many excitations exist in the ensemble.

This situation is described by the binomial distribution B(N, p)n where p = Pe, with n

representing the number of excitations in the ensemble after the pulse. Thus the probability

of n excitations in an ensemble of N TLS after an excitation pulse (ignoring the phase φ) is

B(N,Pe)n =

(
N

n

)
(Pe)

n(1− Pe)N−n. (4.4)

The binomial distribution tells us a number of things about the ensemble after being

driven with a pulse. First, successive measurements with the same pulse area will map out
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an excitation distribution that is not the same as for the two level system with N = 1.

Thus this distribution depends on the number of TLS. Secondly, the binomial coefficient

calculates the number of ways in which the excitations can be distributed in the ensemble

while providing no information about which TLS is excited. This is consistent with the TLS

being indistinguishable.

4.0.2 Product Basis for Ensembles of Two-Level Systems

As a first attempt at building a model for an excitonic basis capturing the ensemble

effects discussed earlier, we consider an approach that has previously been used to model

many-body physics in semiconductors and atom ensembles. We consider product states

ρ = ρi ⊗ ρj that exhibit no additional correlation [30]. To understand this basis we consider

an ensemble of N = 2 as depicted in Fig. 4.1a-b. The Hamiltonian of each TLS is described

by matrix Hi where ωi is the transition energy of the ith system. A Hilbert transformation

H4,4 = H2,2⊗ I2,2 + I2,2⊗H2,2, where Ix,x is the identity matrix of size x, maps the two TLS

into a combined product basis |ψi〉|ψj〉. The resulting Hamiltonian is

H =



0 0 0 0

0 ~ωi 0 0

0 0 ~ωj 0

0 0 0 ~ωi + ~ωj


. (4.5)

The product basis conserves the number of states and is completely equivalent to

two non-interacting TLS. An advantage of this picture is it easily allows the inclusion of

interactions as has been recently demonstrated for Rydberg physics [126]. This process can

be generalized to explicitly include an ensemble of size N [137].

This model type was introduced in phenomenological excitonic models [30, 42] to ex-

plain the biexciton, a molecular binding of two excitons that the semiconductor Bloch equa-

tions could not account for at the time [139–141]. In this case the ith and jth system
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represented oppositely polarized and thus distinguishable excitons. Many-body interactions

are introduced by modifying the relative dephasing rates and energies of the transitions.

The ensemble response was then that of Fig. 4.1b, averaged over N TLS. In the absence

of an interaction energy this model effectively truncates to the first excited manifold. This

transformation and truncation procedure has become extremely common in modeling the

many-body physics of excitons [30, 46, 47, 79, 142–148]. Despite being a flawed model (as

will be discussed), this picture remains incredibly useful and qualitatively calculates many

of the correct results. The model we develop can be considered as a generalization of this

phenomenological model after transforming into an excitation basis.

In such models, which are no longer just used to describe polarization effects, the

inclusion of a many-body interaction term allows the doubly-excited state |ψi〉|ψj〉 = |1〉|1〉

to develop a resonant energy shift ∆ and an additional dephasing term γ′ . In the context of

excitonic physics, this approach is convenient. For instance, in GaAs only transition energies

near the bandgap Kx = 0 need to be considered due to the large effective mass of the exciton.

This approximation treats the bandgap as a transition between the Jz = ±1
2

states in the

conduction band and the Jz = ±1
2
(LH) and Jz = ±3

2
(HH) in the valence band. In the

context of this model, the bandgap energy is corrected by the exciton binding energy. In this

way the energy ~ωk is simply the exciton transition energy (Eq. 1.9). The energy shifts ∆

and γ then represent the two-body interactions manifesting as EID and EIS in the ensemble

of bound electron-holes.

By considering the ∆Jz transitions a clear two-level transition is established between

the HH/LH and conduction band. The Coulomb interaction between the electron and hole

is then considered to modify this transition energy by the exciton binding energy. While

this two-level transition exists, this picture provides an unphysical and confusing picture of

the exciton. At issue is that this model disregards the exciton as a coherent superposition

of electron-hole states. It thus does not capture that the exciton transition dipole is larger

than that of an electron-hole pair by M the number of unit cells [17, 129]. Thus a significant,
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flaw of this model is that 1.) The exciton should be a coherent superposition of the available

states after a ∆Jz transition. 2.) A collective dipole should be readily apparent.

Additionally, there are truncation-averaging issues with this model for excitonic physics.

One issue is that in excitonic models the product basis describes an ensemble of two-level

systems in a diamond structure. No attempt was made to modify the ensemble averaging

process. In particular it is often assumed that P ∼ N〈p〉 when in fact this is only true

for ground manifold - first excitation manifold P0−1 transitions. For transitions between

the first excited manifold and doubly excited manifold the polarization should be averaged

P1−2 ∼ N(N − 1)〈p〉. The total polarization should then be the sum of these two polariza-

tions. This can be simply argued based on the binomial coefficient. The confusion exists

because this model encourages thinking of an ensemble (N � 2) as a two-level or four-level

system. For the unphysical case that N = 2 both P0−1 and P0−2 become averaged over the

same effective factor 2 and thus this effect is immaterial. The extent to which this truncation

and averaging modifies the quantum pathway interference in coherent spectroscopy has not

been explored and is addressed in this chapter. Our model can correctly account for these

averaging issues as well as calculate the enhanced dipole moment of a collective system.

4.1 Excitation Basis and Excitonic Coherent States

4.1.1 An Excitation Basis for an Ensemble with N = 2

The product basis discussion of the previous section provides an immediate path to

create an excitation basis for the exciton. Conceptually, this is important as the exciton

should represent the quanta of the polarization field in a manner analogous to the Fock

states of light [6, 137]. For a system with N = 2 the product basis gave the Hamiltonian

(Eq. 4.5) with states |ψi〉|ψj〉. With identical TLS there are four states, two of which

are degenerate with energy ~ωi = ~ωj. If these systems are indistinguishable then these

states are entangled and the product basis does not accurately represent the system. In the
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excitation basis two manifolds of states are found. The first manifold of states consists of

radiant states depicted in Fig. 4.1c and are

|n = 0〉 = |0〉i|0〉j

|n = 1〉 =
1√
2

[|0〉i|1〉j + |1〉i|0〉j]

|n = 2〉 = |1〉i|1〉j.

(4.6)

The other manifold consists of a sub-radiant state

|n = 1〉 =
1√
2

[|0〉i|1〉j − |1〉i|0〉j]. (4.7)

It is worth noting that dipole operators allow transitions between adjacent states within

a manifold, but do not allow transitions between manifolds. The fact that the ground state

is an element of the radiant manifold therefore justifies its name [137]. Importantly, from

Eq. 4.6 and |n = 1〉 it is clear that a single excitation is shared between the different TLS.

This begins to resemble the wavefunctions created by the excitonic operators Eq. 1.12. After

exciting this system with a pulse the density matrix element of ρee is determined by Eq. 4.4.

If the original TLS represent the unbound-electron-hole states at specific k then these

transitions are between |0〉, the crystal vacuum (empty conduction band and full valence

band), and the state a†kb
†
k′
|0〉 where a†/b† are the electron/hole raising operators. Then, this

excitation basis recaptures the coherent superposition of electron-hole states at n = 1 which

make up the exciton. However, this basis still requires a correction not treated here in order

to be fully correct. Because we are considering TLS and neglecting the Coulomb interaction

the superposition of states is not weighted by the hydrogenic wavefunction from Eq. 1.12.

Fortunately, if the exciton binding energy is then used to correct the |n〉 basis relative to

the bandgap transition energy then these states can model the exciton. Therefore, we have

provided a complete description for N = 2 and in the next section we will generalize this to

N TLS.
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4.1.2 An Excitation Basis for a Collective Ensemble of Two Level Systems

As previously presented, after an exciting pulse there exists some probability of n

excitations in an ensemble of TLS. Therefore, the resulting state of the system is a collective

coherent state. These collective coherent states have previously been worked out by Arrechi

[137] as an atomic analog to the Glauber-coherent states for light. Since we are interested in

the optical response after a pulse, we ignore the sub-radiant states. The binomial distribution

(Eq. 4.4) correctly describes the number of excitations and must also describe the density

matrix elements of the collective system.

Remembering that the density matrix is ρ = |ψ〉〈ψ| a density matrix for the entire

ensemble can be written by using Eq. 4.4 and Eq. 4.2. Each density matrix element after a

pulse with pulse area θ can be written:

ρn,n′ = |n〉〈n′| =
(
N

n

)1/2(
N

n′

)1/2

cos

(
θ

2

)2N−n−n′

sin

(
θ

2

)n+n
′

ei(n
′−n). (4.8)

In an excitation basis for an ensemble with N TLS each diagonal element corresponds

to the probability of some number of excitations. These excitations are distributed in an

indistinguishable way amongst the different TLS in the ensemble, indicating that there is

superposition of TLS as in Eq. 4.6. This is the N element density matrix extension to

Eq. 4.6. The off-diagonal elements, n 6= n
′
, correspond to optical coherences between the

different diagonal elements. From these results as N →∞ the possible number of excitations

goes to infinity and the energy levels of the system resemble that of a harmonic oscillator.

The harmonic oscillator is the well known energy spectrum of a bosonic system and this

relationship maps a collective ensemble of two-level fermions into a bosonic basis as shown

in Fig. 4.1d. In contrast the system is most fermionic for N = 1 when only one excitation

is allowed.

In the following section we formally develop a Hamiltonian capable of describing a

system possessing these statistics and arriving at these density matrix elements.
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4.1.3 The Dicke Hamiltonian and Collective Operators

The model so far has been argued on the basis of statistics in an ensemble of TLS and

in analogy with the coherent states of atomic physics. In particular, since we are explicitly

considering GaAs quantum wells and the exciton has a large mass, only the transitions near

KX = 0 need to be considered. It is then reasonable to introduce the Dicke model as an

effective model of the exciton. As we will show, this model can be reduced to the single-mode

exciton model at KX = 0. The Dicke Hamiltonian is the sum of all of the two-level system

Hamiltonians

H = ~ωa
N

2
+

N∑
i=1

~ωa
2
σz,i +

N∑
i=1

~g(E∗σ−i + σ†iE) (4.9)

In this Hamiltonian σz,i is the Pauli spin matrix of the ith electron-hole transition, ~g is

the dipole coupling strength of an individual TLS, E∗, E correspond to the electromagnetic

field components, and σ±i corresponds to the raising and lowering operator of the ith TLS.

The constant energy term has been included to provide an offset energy appropriate for

semiconductors. Because this Hamiltonian is expressed in terms of Pauli operators, this

basis is fermionic. The collective operators of the ensemble can be defined as

Sz =
N∑
i=1

1

2
σz,i

S+ =
N∑
i=1

σ†i

S− =
N∑
i=1

σ−i . (4.10)

There exists a basis transformation developed by Holstein and Primakoff [149, 150]

that maps the Pauli matrices into a bosonic basis. Similiar transformations have been

derived for both Frenkel and Wannier excitons [151–153], and for Frenkel excitons these

transformations directly reduce to the Holstein-Primakoff transformation [152]. The sum of
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operators in Eq. 4.9 can be re-represented as collective operators. Applying the Holstein-

Primakoff transformation maps the mode into a bosonic basis, which is indexed by excitation

level n = b†b. This transformation is defined by:

S− = (N − b†b)1/2b, (4.11)

S+ = b†(N − b†b)1/2, (4.12)

Sz = b†b− N

2
, (4.13)

where b and b† are bosonic raising and lowering operators for a collective ensemble

of TLS. In the perturbative limit, the Holstein Primakoff transformation may be expanded

based on the degree of excitation b†b� N . Applying this limit, these operators become:

S− = (1− b†b

N
)1/2b
√
N,∼ b

√
N (4.14)

S+ = b†
√
N(1− b†b

N
)1/2 ∼ b†

√
N, (4.15)

Sz = b†b− N

2
. (4.16)

The error in this expansion scales as b†b
N

where b†b defines the number of excitations in

the ensemble of TLS. This error provides a similar relation as Eq. 1.13, the bosonic operator

error derived from the Wannier approximation. The Dicke Hamiltonian in the bosonic basis

is then

H = ~ωab†b+ ~g
√
N(a†b+ b†a). (4.17)

This bosonization procedure results in an enhanced ensemble-electromagnetic field cou-

pling strength g
√
N which represents a collective Rabi frequency [154–157]. This dipole

moment can be many orders of magnitude larger than the dipole moment of a single TLS

leading to the concept of a “giant oscillator strength”[17, 158]. Note that this equation is

equivalent to the single-mode form of Eq. 1.17. Therefore the Rabi frequency g0 of Eq.
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1.17 is a collective dipole that scales with ∼ g
√
N . In semiconductor quantum wells there is

no ability to change N . In order to know the collective enhancement of the exciton dipole

moment, it must be calculated and then compared to a measured saturation density. To

estimate N we consider a QW 1S exciton [17] and take the Fourier transform of Eq. 1.7 to

find a wavefunction in relative k-space

FT [φn(~r)] = φ(~ke, ~kh)n=1 =
2

a2
0

(
1
a20

+~l2
)3/2

. (4.18)

Here a0 is the exciton Bohr radius and ~l = mh
M
~ke−me

M
~kh, where ~ke( ~kh) are electron(hole)

wavevectors and M = me+mh. The plane wave decomposition of this wavefunction describes

the exciton in relative k-space where it is distributed around multiple k-modes. Since we are

considering the bandedge exciton in GaAs Kx = 0 which makes ke = −kh. Then the density

of electron-hole states can be calculated by:

N

A
= 〈k2〉 =

∫ ∞
0

φ1(~ke, ~kh)φ
∗
1(~ke, ~kh)n=1k

2dk (4.19)

= (
1

a0

)2. (4.20)

For the case of GaAs this value is ∼ 1012cm−2 which agrees with experimentally mea-

sured values of the oscillator saturation density [158]. This enhanced dipole strength is

graphically explained in Fig. 4.2a-b. An exciton with center of mass wavevector ~KX ∼ 0 is

distributed across many electron-hole pairs by the Fourier transform of the hydrogenic wave-

function. The distribution across many electron-hole pairs causes a collective enhancement

of the exciton dipole with respect to a single electron-hole transition. The large effective

mass of an exciton in GaAs ensures that ~KX = 0.
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Figure 4.2: a.) Exciton picture of a semiconductor. The exciton exists as a bound state
below the electron-hole plasma. Optical excitation must occur at Kx ∼ 0. b.) Electron-
hole picture of a semiconductor. The exciton absorption occurs below the conduction band
(dashed energy levels). For an exciton with center of mass wavevector Kx ∼ 0 there exists
a range of electron-holes that contribute to the excitonic wavefunction as indicated by the
yellow distribution.

4.2 Perturbative Evaluation of The Effective Exciton Model

In the preceding sections, we established the two-level transitions in a semiconductor

as being between the valence and conduction band ke,h states. Unfortunately, in real exper-

iments the Coulomb interaction cannot be turned off and observing the Rabi flopping of a

single electron-hole transition is inaccessible, although signatures of inversion have [159] been

observed. Part of the issue is that at higher excitation density many-body interactions in the

form of Coulomb screening may convert the ensemble back into an e-h plasma, effectively

removing the exciton dynamics. As a result, most experiments studying the exciton are
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conducted in a perturbative optical regime. We therefore attempt to discuss the excitation

model in a perturbative regime and learn that while the optical response is perturbative the

density matrix elements of the excitation model are highly non-perturbative.

In order to demonstrate this confusing situation we make use of a collective excitonic

Bloch vector defined in analogy with the collective Bloch vectors of the Dicke model. The

collective Bloch vector can calculate the polarization at any excitation level except in the

limit that the pulse area θ → π. In the limit of a rotation that is infinitesimally close to π

the rotation operator becomes singular. The collective polarization can be calculated simply

by considering the polarization of a single TLS by Eq. 4.2 with p = µ0 sin θ
2

cos θ
2
eiφ =

1
2
µ0 sin θeiφ. The polarization of the ensemble can then be calculated by adding each TLS

polarization together to form a collective Bloch polarization-vector ~P = N
2

sin θeiφ. The

polarization vector ~P can be perturbatively expanded about θ = 0, providing a perturbative

expansion that scales in odd orders of the pulse area. The polarization scaling with odd

orders of the electric field is consistent with the optical susceptibility in centrosymmetric

media such as 100 grown GaAs. In this example the polarization transitions from linear

to non-linear at a pulse area θ ∼ .2 as shown in Fig. 4.3a. The first few expansions are

plotted up to third order in Fig. 4.3a. At the same time we make use of the identity

P = tr(µ̂ρ) to perturbatively expand the polarization from the density matrix elements of

Eq. 4.8. From these calculations we are able to correctly calculate the polarization response

finding excellent agreement with the expansion of the collective Bloch vector as shown in

Fig. 4.3a. Curiously, however, we find that the density matrix elements that calculate the

polarization are non-perturbative and are zero for most pulse areas as shown in Fig. 4.3b and

are therefore non-perturbative. We also find that this issue becomes even more problematic

as, N , the number of states grows.

Essentially we have found that the Taylor expansion gives the right answer for the

wrong reasons. This puzzle can be resolved by realizing that the although the perturbative

expansion of the first few density matrix results in a dramatic overshoot of lowest-lying den-
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Figure 4.3: A.) Polarization as a function of pulse area for N = 100. Solid curves were

calculated using the expansion of ~P = N
2

sin θeiφ. Dashed curves represent the polarization
calculated using the perturbative expansion of the density matrix. The dashed black line
at θ ≤ .2 represents approximately where the linear polarization ends and higher order
terms are needed. B.) Selected radiating offdiagonal density matrix elements distributed
over pulse area θ for N = 100. In the linear regime the matrix elements ρ0,1 and ρ1,0 are
non-perturbatively zero.

sity matrix elements, the overshoot is almost perfectly compensated by an equally dramatic

undershoot in the perturbative expansion of matrix elements corresponding to higher-lying
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energies. The polarization resulting from the first few excited states is actually zero even

though the response looks linear. This can be resolved by realizing the following. A polyno-

mial with many terms can perfectly describe a line or a simple polynomial with few terms

over a finite range. The expansion of the non-zero density matrix elements at a given pulse

area results in such a polynomial. Due to the symmetry of the excitation basis, we are able

to show that this polynomial must exactly equal both the expansion of the first few terms of

the density matrix (that are non-perturbatively zero) and the polarization calculated from

the collective Bloch vector. Critically, this result allows us to explain how bosonic models

which truncate at the first few excitation levels are able to calculate the qualitative response

of the exciton. Importantly, this model may allow the resolution of many-body induced

dephasing that has so far been put in by hand. Few-level models are essentially equivalent

to truncating the full excitation ladder. This truncation provides no mechanism for power-

dependent dephasing after the first pulse in a four-wave mixing experiment. However, such

effects have been seen in previous FWM experiments [31]. Fortunately, with an excitation

basis that encapsulates all levels this effect is straightforward to understand. The dephas-

ing after the first pulse is caused by dephasing at the nth excitation manifold, varying the

power of the first pulse makes the experiment sensitive to dephasing at the n
′ 6= n manifold.

Few level/truncated models completely miss this effect because they incorrectly average the

ensemble response and lack the phase space to evaluate the actual statistics of the model of

which excitation induced dephasing is dependent.

4.2.1 Mathematics of the Perturbative Expansion of the Density Matrix

In this section we prove the above discussion regarding how to calculate the polarization

response and arrive at a our results for the density matrix elements. First we remind the

reader of two mathematical theorems that we will refer to.

Theorem 1. Uniqueness Theorem for a Taylor Series: The Taylor series of a func-
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tion f(x) about a point x0, if it exists, is unique. Therefore, there is only one power series

of the form
∑∞

n=0 fn(x− x0)n which converges to f(x).

Theorem 2. Product of two Convergent Series: Given two convergent series
∑

n anx
n

and
∑

n bnx
n expanded about the same point, the product of these two series is also a con-

vergent series i.e.
∑

n anx
n ·∑n bnx

n =
∑

n cnx
n

Definition 4.2.1. Density Matrix Expansion The general form of the density matrix

after a pulse is Eq. 4.8. A convergent series can be written for sin(x)q and cos(x)q for

q > 0. We therefore make use of the product-convergent series theorem to write the pulse

area expansion for the density matrix elements as:

ρn,n′ =
∞∑
k=0

cn,n′,kθ
k (4.21)

where we are neglecting the terms arising from the azimuthal angle φ.

4.2.2 The Perturbative Polarization

This term may be Taylor-Series expanded to find a polarization in powers of the applied

pulse area θ. This series expansion has only terms with odd powers in pulse area. We treat

this expansion as a sum of terms

P =
N

2

∞∑
k=0

p(k). (4.22)

In spectroscopy n-wave mixing results in the selection of the polarization to the p(n)

term.

4.2.2.1 Derivation of p(k)

The polarization is
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P = tr(ρ̂µ̂) =
∑
i,j

ρi,jµj,iδi,j=i±1. (4.23)

Here the δ describes dipole available transitions in the ladder of states. We substitute

(Eq. 4.21) into (Eq. 4.23) to find the polarization is

P =
∞∑
k=0

θk
∑
i,j

ci,j,kµj,iδi,j=i±1. (4.24)

Using Eq. 4.22 each p(k) term is found to be

N

2
p(k) = θk

∑
i,j

ci,j,kµj,i. (4.25)

4.2.3 The Perturbative Excitation Level

A complete description of of our system should also discuss the excitation level/population.

The polarization is but one component of the collective Bloch vector. Consequently, we find

there is a similiar issue in calculating the excitation level as for the polarization. Namely,

that the excitation level can be calculated from unphysical density matrix elements. From

the Bloch sphere, the number of excitations is 〈n̂〉 = N
2

(1 − cos θ). This is the projection

onto the z-coordinate of the Bloch sphere. We expand this equation to find

〈n̂〉 =
N

2

∞∑
k=1

〈n̂〉k. (4.26)

From the density matrix the excitation level is

〈n〉 = tr(ρ̂n̂) =
∑
i,j

ρi,jnj,iδi,j. (4.27)

The δi,j arises because only on-diagonal elements of the density matrix determine the

excitation level. We now substitute (Eq. 4.21) into the above equation to find a perturbative

expansion of 〈n̂〉 in powers of pulse area θ
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〈n〉 =
∑
i

∞∑
k

ci,i,kθ
kni,i. (4.28)

We then reduce this equation and equate it to Eq. 4.26 to find the identity:

N

2
〈n̂〉(k) =

∑
i

ci,i,kθ
kni (4.29)

for each 〈n̂〉(k).

4.2.4 Two-Wave Mixing

Now that we have the correct expressions to evaluate the wave-mixing process in a

collective system, we consider the simplest wave mixing process i.e. two-wave mixing. Ex-

perimentally, two-wave mixing corresponds to linear absorption or photoluminescence and

is the most straightforward wave mixing process to consider.

4.2.4.1 Collective 2-Wave Mixing: Polarization

The linear polarization response governs the two-wave mixing process that occurs when

one driving field excites the sample and a second field is emitted. Using the dipole selection

rules ∆n = ±1 and (Eq. 4.25) we find the following identity

N

2
p(1) = θ

∑
i

ci,i±1,1µi,i±1 (4.30)

for the perturbative polarization. The coefficient ci,i±1,1 is proportional to [cos θ
2
]2N−n−n

′

[sin θ
2
]n+n

′
from (Eq. 4.8). The sum over i thus sums n from n = 0 to n = N in steps of

∆n = 1. However, the expansion of ci,i±1,1 will only have non-zero elements for c0,1 and c1,0.

Simply put, the expansion of ci,i±1,1 only provides a linear expansion in θ if i = n = 0. From

(4.30), the first order polarization is found to be:

N

2
p(1) = θ(c0,1,1µ1,0 + c1,0,1µ0,1). (4.31)
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The macroscopic first order polarization is calculated by the first term in the pertur-

bative expansion of the first off-diagonal element of the density matrix.

4.2.4.2 2-Wave Mixing: Excitation Level

Additionally, an incoherent two-wave mixing process can be measured when the driving

field creates a population in the ensemble. In such experiments the measured signal is

then collected either as incoherent photoluminescence or photocurrent etc. We make use of

the two relations 〈θ, φ|n̂|θ, φ〉 = N
2

(1 − cos θ) and N
2
〈n̂〉(k) =

∑
i ci,i,kθ

kni to determine the

excitation level. It is evident from the expansion of cos θ that only even orders in pulse area

will contribute to the population response. The first of these even orders is k = 2 which

describes two-wave mixing. We therefore calculate the excitation level

N

2
〈n〉(2) = θ2c1,1,2 (4.32)

because n0 = 0 and n1 = 1. Thus incoherent two-wave mixing is calculated by the first

non-zero term in the pulse area expansion of the first excited state.

4.2.5 Collective Wave Mixing General Discussion

As discussed earlier in this chapter, the first few terms of the density matrix expansion

correctly calculate the polarization or excitation level response as we have just shown and as

plotted in Fig. 4.3. This result is peculiar as these density matrix elements are identically

zero for most pulse-areas for which they are being used to calculate the polarization or ex-

citation level. In the following we consider two cases to understand what elements calculate

polarization when these density matrix elements are not zero, and the other case to under-

stand what density matrix elements actually contribute to the polarization for most pulse

areas. The first case is that of non-zero density matrix elements at low excitation density.

In this case we show that the higher order terms destructively interfere with the each other
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to make the polarization correctly determined by the first few terms in the density matrix

expansion. We then consider the non-intuitive case where these density matrix elements are

zero. In this case, we find that the wave-mixing process is well described by a multi-term

polynomial that exactly approximates the polarization and excitation components of the

Bloch vector.

To resolve the presented paradox we include the higher order terms in the polarization.

These are the terms that are typically not included because of the truncation of P or n. The

complete expression is

P (n) =
∑
i,j

(
n∑
n=0

ci,j,nθ
n)µj,iδi,j=1±1+

∑
i,j

(
∞∑
k>n

ci,j,kθ
k)µj,iδi,j=1±1+

∑
i,j

(
∞∑
k>n

di,j,kθ
k)µj,iδi,j=1±1.

(4.33)

The above equation is (4.24) broken up into three pieces. The first term consists of

density matrix elements with the apparently correct scaling in pulse area θ0..n. The second

term consists of the terms typically truncated once the required order in pulse area have

been arrived at. So these elements are the higher order θn+1,n+1... terms. The final term

consists of the density matrix element terms not included in the polarization because di,j,n is

identically zero. These terms are “zero” because no terms exist with the right order in θ. We

explicitly consider polarization signals, however we find similar arguments for the excitation

level 〈n〉.

4.2.5.1 Interference of Higher Order Terms at Low Excitation Density

The first case is the case we expect because at low excitation density the first few

density matrix elements are non-zero. Therefore these matrix elements contribute to the

polarization or excitation level. Furthermore the perturbative expansion including higher
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order terms still works even if higher lying states are partially occupied. To see this effect

we set the perturbative total polarization P (n) equal to the first term in (Eq. 4.33).

∑
i,j

(
n∑

k>n

ci,j,kθ
k)µj,iδi,j=1±1 =

−
∑
i,j

(
n∑

k>n

di,j,kθ
k)µj,iδi,j=1±1

(4.34)

Thus the higher order terms m > n of the density matrix elements ci,j,k identically

cancel with the higher order terms of di,j,k. This analysis shows that for polarization signals

dominated by n-wave mixing the residual higher order (n + 1) terms from these first few

density matrix elements destructively interfere with the n + 1 terms from the higher lying

density matrix elements. This result is only physical when N is small or when θ → 0 because

the density matrix elements ci,j are non-perturbatively zero for most θ and large N . In the

next section we arrive at the case that is physical in most situations.

4.2.5.2 Signal from the Higher Order Terms

The previous section showed that in some very specific situations the polarization

calculated from the first few density matrix elements can be “physical” in the sense that these

elements are non-zero. For most situations, particularly at large N , these density matrix

elements are zero and thus are not actually contributing to the polarization. Therefore the

“physics” must be that the polarization arises from non-zero density matrix elements. The

sum of these dipole weighted density matrix elements must be adding together to provide a

polarization that is equivalent to the polarization calculated from the expansion of the first

few density matrix elements. We can show that this is true by setting the first two terms of

Eq. 4.33 equal to zero since these terms must cancel each other in order for these density

matrix elements to be zero.
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∑
i,j

(
n∑
n=0

ci,j,nθ
n)µj,iδi,j=1±1 =

∑
i,j

(
n∑

k>n

di,j,kθ
k)µj,iδi,j=1±1. (4.35)

This description is non-intuitive as the term on the left does not have the same powers

of θ as the term on the right. The interpretation is that there exists a valid range of θ for

which the higher order terms cancel each other in just the right way to provide a slope that

is identical to the terms on the left. For linear polarization, a highly nonlinear function can

approximate a linear dependence on θ for an appropriate range of θ as seen in Fig. 4.3.

Generalizing to arbitrary polarization order, a highly nonlinear many-term polynomial can

approximate a less nonlinear fewer-term polynomial over an appropriate range of pulse area

θ. Critically, it is this effect that explains how for a few level model can accurately calculate

the polarization response of an ensemble with large N acquiring a significant truncation

error. In the limit that N → ∞ an infinitesimal pulse area θ will make the density matrix

elements non-perturbatively zero rendering this the correct interpretation of the physics of

the ensemble.

4.3 Discussion of Model and Numerical Results

In the above sections a statistical model of the exciton was presented in the context of

collective coherent states and this model was evaluated in a perturbative regime. We were

able to demonstrate that truncation at the first few levels of this model allows for an accurate

calculation of the polarization. The truncation process generates what is effectively a few-

level model. The physical origin of this was made clear by explaining the interference effect

of a many-term polynomial resulting from the pulse-area expansion of the density matrix

elements. Thus for systems without many-body interactions and in a large N limit the

actual excitation level is unnecessary for calculating the polarization response. However, in

the presence of many-body interactions which depend on the actual excitation density, such

as EID and EIS, these results become suspect. To evaluate whether the few-level truncation-
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calculation can still qualitatively agree with the total polarization we numerically evaluate

the polarization for N = 100 TLS coupled by a two-body many-body interaction as will be

discussed in the following.

4.3.1 Numerical Analysis of Many-Body Resonant Energy Shifts

To evaluate the total polarization response in the presence of many-body interactions

we implement a numerical simulation. We make the assumption that the largest many-body

interaction contributing to the resonant energy shifts is a two-body interaction. The number

of possible two-body interactions k = 2, where k is the number of many-body interactions,

is described by the binomial coefficient from which we can assign an interaction Hamiltonian

Hint =
1

N

(
n

k

)
~ε ∼ 1

N
~εn̂(n̂− 1). (4.36)

Here ~ε is the interaction energy and n̂ are number operators describing the interaction.

The factor of 1
N

is a normalization constant. For this interaction to be perturbative we

must satisfy the condition ~ε � ~ωa from Eq. 4.9. The simulations numerically solve

the Von-Neumann equation in the absence of damping for N = 100 TLS as a function

of incident pulse area for different interaction energies. We then numerically compute the

total polarization immediately after the pulse. In the absence of many-body interactions

ε = 0 the polarization response is due to phase-space filling, with nonlinearities due to the

saturation of the ensemble. The inclusion of many-body interactions allows for the possibility

of the polarization to deviate from the phase-space filling only result. Our calculated total

polarization does not dramatically deviate from the phase-space dominated polarization

in the presence of many-body interactions (Fig. 4.4). This is reassuring as our many-

body interaction should be perturbative to the bare Hamiltonian. In a truncated model

we expect, although we do not prove, that essentially the same result will be found. Since

a truncated system calculates the same polarization as a non-truncated system we expect
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Figure 4.4: Numerical simulations as a function of pulse area θ are presented for N = 100
TLS in a collective regime in the absence of damping. Both positive and negative interaction
energies reduce the polarization magnitude perturbatively until becoming an appreciable
fraction of the transition energy ~ω0. a.) Numerical calculation of the total polarization
for positive interaction energies ~ε. b.) Numerical calculation of the total polarization for
negative interaction energies. ~ε.

that the inclusion of a perturbative many-body parameter is sufficient to capture the many-

body induced deviations from phase-space only nonlinear polarization. Thus provided the

interaction energies are perturbative, they cause deviations about the interaction free result

and therefore may allow for the extraction of an ordered tree of many-body interactions

i.e. two-body, three-body etc. We numerically evaluate the model for both positive and

negative interaction energy as a function of pulse area θ (Fig. 4.4 a-b) . Both positive and

negative interaction energies reduce the total polarization and systematically shift the total

polarization to smaller values. Note that the polarization shift to a smaller magnitude is an
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artifact of our choice of interaction Hamiltonian. The interaction Hamiltonian considers two-

body interactions and acts as a resonant energy shift for each rung of the excitation ladder.

As a result, the self-resonant interaction energy is not uniform across the unperturbed energy

spectrum and grows at higher excitation density to reflect the increased number of bodies

available to interact. Thus higher excitation levels are increasingly non-resonant with the

driving radiation field and the probability to excite them should decrease. The choice of

a different interaction Hamiltonian that can include n-body interactions may correct this

effect.

Importantly, effects such as excitation induced dephasing are not captured by this

simulation. The effect of many-body interactions on the polarization phase has been pre-

viously observed in GaAs quantum wells [41]. These phase effects are critical as they alter

the time-dynamics of the polarization as well as the maximum amplitude and are directly

related to both resonant energy shifts and additional dephasing. As previously discussed,

using a truncated few level model calculates the correct polarization response in the absence

of many-body interactions. Fortunately, the inclusion of many-body interactions in a trun-

cated few level model is now more justified since these parameters do not dramatically alter

the total polarization response using a non-truncated model.

4.4 Discussion of Model and Relevance to Experiments

As part of our discussion in developing the model and the interference effect of the

density matrix elements in calculating the total polarization we realized that there existed a

secondary interference effect that would show up in experiments on collective systems. This

secondary interference occurs due to experimental methods that involve phase-matching or

phase-cycling. As a simple example consider two coincident pulses which excite a spatially

extended collective system. The phase across the system will vary as φ = ( ~kA− ~kB)·~x resulting

in a non-uniform pulse area across the system. Effectively, the system is experiencing a pulse-

area modulation at the spatial difference frequency that leads to a population grating. A
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grating implies that the signal does not arise from a single distribution of density matrix

elements but rather several. In order to quantitatively analyze this effect we consider an

analogous system: a spatially localized collective system and use time-dependent pulse-pulse

phase cycling in order to evaluate this interference effect quantitatively. Time dependent

pulse-pulse phase cycling can be achieved via shifting the carrier frequency of two pulse

trains to be slightly different [90–92] resulting in a modulation of the electric field amplitude

at a frequency much slower than the optical frequency. This slow modulation process result

in a shot-to-shot pulse area modulation that can be quantitatively analyzed. The pulse area

in this process for two pulses-coincident in time is:

θ(t) = θ0 cos (
1

2
(ωA − ωB) · t). (4.37)

where ωA,B are the shifted carrier frequencies of the two pulse-trains and θ0 is the

amplitude of the electric field when both field A and B constructively interfere. The modu-

lation frequency is ∆ωA,B. In the case considered here the system decays in the time interval

between successive pulses as in Fig. 3.6. The effect of this modulation ensures that suc-

cessive shots do not excite the collective system with the same amplitude. By detecting

at the modulation frequency it is impossible to specify what state or what excitation level

the system was excited to since this was varied shot-shot. The effect of detecting at the

modulation frequency is to low-pass/integrate the measured signal adding together signals

from highly excited density matrix elements and weakly excited density matrix elements

measured at different times. Detecting at the modulation frequency results in a signal that

cannot demonstrate the same polarization response as Fig. 4.3 or Fig. 4.4a-b because the

measurement is not sensitive to the polarization after a single shot of pulses but rather

successive unequal amplitude pulses. Perhaps surprisingly, this suggests that coherent spec-

troscopy techniques as related to collective systems are inappropriate for coherent control as

successive shots do not prepare the system in the same state unlike pump-probe techniques.
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In order to further evaluate this effect we numerically and analytically evaluate the

density matrix with a modulated pulse area. In the limit of infinite N we can solve for

ρn,n(t) and find the following relationships,

ρn,n(t) =
1

N

∞∑
k=−∞

F (
n

N
, θ0)[δ(t− tn · k) + δ(t+ tn · k)] (4.38)

with the function F ( n
N
, θ0) given by:

F (
n

N
, θ0) =

2

θ0∆ωA,B

√
n(1− n

N)
N

√
1− 4 sin−1(

√
n
N)

2

θ20

. (4.39)

The peak value of ρnn(t) is tn = 2
∆ωA,B

arccos
(

2
θ0

arcsin(
√
n)
)

. The asymptotic limit of

ρn,n(t) is 1
N
√

2π
F ( n

N
, θ0). As the pulse area continuously varies from high to low each density

matrix element experiences a burst of probability. Each density matrix element as a sum

of time-dependent delta functions effectively becomes a frequency comb with a repetition

rate determined by the modulation frequency. Thus each density matrix element acquires

phase dependent on the modulation frequency. When filtered to isolate a single frequency

component of the pulse train interference occurs between different density matrix elements.

To demonstrate this effect we numerically evaluate an ensemble of N = 10, 100, 1000

TLS with a modulated pulse area in order to identify components of the density matrix

elements ρn,n(∆ω) that evolve at the mixing frequency of the two fields ∆ωA,B as shown in

Fig. 4.5A-C. If the physical signal measured is related to a population or excitation density

then the density matrix elements are weighted by the excitation level operator. Surprising

features appear in the filtered density matrix elements. The ground state density matrix

element remains anti-phased with respect to most higher lying excited states. This effect

becomes more pronounced as N grows larger. As can be seen from the figures a complicated

interference effect appears where at a given pulse area excited states that are not the ground

state become oppositely phased with respect to to higher lying excited states. The highest
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excited density matrix element can never approach a probability of 1 even for a pulse area of

π because this probability becomes distributed amongst different frequency elements. This

suggests that phase-matching and phase-cycling schemes may be inappropriate to study

collective systems near inversion without first using a pre-pulse. As the number of TLS grows

the relative amplitude of the higher excited density matrix elements decreases indicating that

the wave mixing process is distributed amongst many more frequencies for higher excited

density matrix elements that for lower density matrix elements.

Our analysis of this phenomenon has lead to a secondary interference effect that is

primarily related to nonlinear frequency mixing in the highly non-linear density matrix.

This frequency mixing provides evidence that experiments that isolate certain wave mixing

responses may be inappropriate to study collective systems at higher pulse-induced excitation

density.

4.5 Conclusion

We have evaluated wave-mixing processes in collective systems. Our approach utilizes

a statistical model to motivate a discussion of the exciton and many-body interactions. We

find that there exists significant justification for few level truncated schemes and that the

error from these schemes should exist from underestimating the excitation density after the

first pulse. We have evaluated the effect of many-body interactions on the polarization re-

sponse and shown that while they do cause deviations they do not dramatically alter the

total polarization. This suggests that truncated few level models that include many-body in-

teractions are appropriate to modeling the deviations from phase-space only effects. Finally,

we have also discussed the role of phase-matching and phase-cycling in interpreting wave-

mixing experiments in collective systems. We find that standard experimental approaches to

wave-mixing are inadequate for studying collective systems near inversion and that even at

low excitation density care must be taken when calculating the polarization to make sure it

agrees with observables of the experiment. This motivates experiments that use a pre-pulse
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A. B. C.

Figure 4.5: Top figures are slices of the probability amplitude ρ(∆ωA,B) at time t = 0,
as a function of pulse area. The bottom figures plot the absolute amplitude of all density
matrix elements as a function of pulse area θ0 at the two-wave mixing frequency. White lines
indicate where the modulated density matrix elements develop a π phase shift relative to the
pulse area θ(t). A.) Selected density matrix components at frequency ∆ωA,B, ρ(∆ωA,B) for
N = 10. B.) Selected density matrix components at frequency ∆ωA,B, ρ(∆ωA,B) for N = 100.
C.) Selected density matrix components at frequency ∆ωA,B, ρ(∆ωA,B) for N = 10.
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before probing with coherent based on these modulation schemes spectroscopy. A pre-pulse

that is unrelated to the phase matching or phase cycling of coherent spectroscopy will al-

ways excite the system in an identical state allowing for a better estimation of the excitation

density and many-body parameters.



Chapter 5

Strong Coupling Regime for Two-Level Systems and Collective Ensembles

Light-matter interactions describe the way in which matter absorbs and emits energy

to and from driving radiation. Of universal importance is understanding ”what happens”

when matter becomes optically excited. Does it disassociate, re-radiate, or transfer the

energy to another system? In the modern era of light-matter interactions it has become

possible to strongly couple matter to light through the use of high-Q cavities. This regime of

strong-coupling is of particular importance because it provides information about absorbing

media and light itself. The strong-coupling regime is a coherent effect in which the quantum

states are described by a superposition of photons and matter states. This chapter explores

the strong coupling regime for two types of absorbing media, two-level systems and collective

systems, with the goal of understanding the characteristic signatures of strong coupling for

both systems.

An optically induced matter-coherence represents a superposition of two or more quan-

tum states with a defined relative phase between each other. Dephasing is the process by

which information about the phase of this coherence is irreversibly lost. If the dephasing

rate is negligible then the coupling strength between light and matter can be recorded as a

Rabi frequency. The Rabi frequency describes the cyclical evolution of a driven system of

two quantum states. Intuitively, a driving field of longer duration will make it more likely

for an initially unexcited system to absorb a photon. Conversely, a driven initially inverted

system will be stimulated to re-emit and become de-excited. The Rabi frequency represents
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the rate at which these processes occur.

For most systems the Rabi frequency is small enough to consider the matter-coherence

independently from the quantum states of light. With the advent of strong coherent light

sources it became possible to drive the population transfer between two states so strongly

that a population-modulation process takes place. The resulting spectrum is the Mollow

triplet [160] of resonant fluorescence. This spectrum is characterized by a central emission

line and two side-bands with a peak separation corresponding to the Rabi frequency. In the

fully quantum picture of this process the two states are interacting with excitation manifolds

described by the statistics of the driving radiation. In the limit that the coupling is strong

enough the degeneracy of matter states and light states at each excitation manifold is lifted

by a Rabi splitting. The resulting allowed-transitions results in the characteristic Mollow

triplet spectrum. The key to observing the Rabi splitting is to increase the electromagnetic

fields energy density by increasing the driving amplitude while remaining in a regime where

dephasing is negligible.

With the advent of high Q cavities it has become possible to dramatically increase the

field energy density while remaining in a low excitation regime. This advance has resulted in

the observation of vacuum Rabi splittings for both two level systems and collective ensembles.

The vacuum Rabi splitting is the characteristic signature of strong coupling. The vacuum

Rabi splitting occurs when the energy density of the electromagnetic field is large enough to

cause strong coupling at the single photon level. Here we review the strong coupling of both

two level systems and collective ensembles strongly coupled to the electromagnetic field with

the goal of providing needed background to subsequent chapters exploring the dynamics of

strongly coupled collective systems.

5.1 Strong Coupling of the Electromagnetic Field to a Two-Level System

The second quantization Hamiltonian for a two-level system interacting with a monochro-

matic electromagnetic field is given by the Jaynes-Cummings Hamiltonian (JCH) in the
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rotating wave approximation [150, 161]:

H = ~ωL(a†a+
1

2
) + ~ω0(σz) + ~g(a†σ− + σ+a). (5.1)

Here ωL is the laser frequency, ω0 is the resonant frequency of the two level system,

a†(a) are the creation(annihilation) operators for the electromagnetic field, σz is the Pauli

z-matrix, and σ− = |g〉〈e| and σ+ = |e〉〈g| are the lowering-raising operators of the two

level system and g is the Rabi frequency. We define a detuning δ = ωL − ω0 and consider

the regime near resonance |δ| << ω0. The wavefunctions of this system are described by

excitation manifolds in the basis |i(j), n〉 where i(j) refers to an excited(unexcited) matter

state and n refers to the photonic excitation number. The expectation value for the coupling

energy is non-constant and changes with respect to excitation manifold n. It’s dependence

is

Hcoupling = 〈j, n+ 1|~g(a†σ− + σ†a)|i, n〉 = ~g
√
n = ~

Ω

2

√
n. (5.2)

In the classical limit of many photons driving a two-level system, the Rabi frequency becomes

(Eq. 2.14) and the variation with photon number is unimportant. In the few photon limit

this variation has profound consequences on the energy structure as will also be shown.

5.1.1 Classical Limit

A classical laser field can be described quantum mechanically using coherent states |α〉

in a number basis |n〉. These states are given by:

|α(t)〉 = e−|α|
2/2e−iωLt/2

∞∑
n=0

αne−iωLnt√
n!

|n〉. (5.3)

The number of excitations is only defined to within the variance of the coherent state,

which scales with the number of excitations in the field. The expectation value and and

square of the photon number are
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n̄ =< n >=< a†a >= |α|2 (5.4)

and

< n2 >=< (a†a)2 >= |α|2 + |α|4. (5.5)

Using these relations the photon number variance σ2
n is

(σn)2 =< n2 > − < n >2= |α|2. (5.6)

The classical limit occurs when σn � 1 but n̄ � σn. In this limit, the average, coupling

taken from Eq. 5.2, is

ν = g
√
n̂. (5.7)

and the deviation in that coupling [162] is given by

∆ν ∼ ν
g
√
σn

g
√
n̂

(5.8)

which goes to zero in the classical limit such that ν is a constant. In the classical regime the

energy structure produced by the Jaynes-Cummings Hamiltonian at a given manifold ζ is:

Hζ =

(n+ 1)ωL g
√
n

g
√
n ~ω0 + nωL

 . (5.9)

The effect of the strong coupling is to mix the field-two state systems eigenvectors and

provide new eigenmodes. The eigenmodes are characterized by frequencies:

ωn,± = (n− 1)ωL +
1

2
(ωL + ωA)± 1

2

√
4g2n+ (ωA − ωL)2. (5.10)

In the classical limit the coupling strength constant between manifolds and the energy

structure of the system becomes that of Fig. 5.1a. The coupling between the field and
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the two-level system makes it so that the new eigenfrequencies are split by the factor

Ωn =
√

4g2n+ (ωA − ωL)2 on resonance. This splitting is known as a the Rabi splitting

and in the classical limit Ωn → Ω̄n̄ the Rabi frequency at average excitation level n̄. At

each excitation manifold the two-level system is oscillating between excited and unexcited.

The rate of evolution at each manifold is given by the Rabi splitting. At high excitation

levels the Rabi frequencies are virtually the same. Subsequently, the two-level system is

well approximated as oscillating between excited and unexcited states at the average Rabi

frequency.

Figure 5.1: The classical regime of the Jaynes-Cummings Hamiltonian. a.) The energy
spectrum plotted for n̄ � ∆n. The uncoupled states are plotted as a function of detuning
for the different manifolds ζ. In this regime the Rabi splitting ωn at each level is constant.
The colored arrows indicate the allowed transmission energies. b.) The Mollow triplet
spectrum characteristic of the strong electromagnetic driving of a two-level atom with peaks
color-coded to match the transitions in a).

The dressed states at a given excitation manifold are found to be
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|±〉 = sin(θ)|0, n〉 ± cos(θ)|1, n− 1〉 (5.11)

such that the system is found to be in a superposition of excited-unexcited atom and photon

number state. The ratio of the weighting between the different wavefunction components is

[162]

sin 2θ =
2g
√
n

Ωn

(5.12)

cos 2θ =
ωL − ωA

Ωn

. (5.13)

For large detuning the energy levels of Fig. 5.1a represent A.C. Stark shifts of the two

level system. On resonance ωA = ωL the state of the system is equally weighted between the

field and the two level system. As the detuning is swept from very negative to very positive

the state |+〉 smoothly transitions from |0, n〉 → |1, n− 1〉 passing through an anti-crossing.

The state |−〉 does the converse.

The emission spectrum of this system was first described using a classical single-mode

field by Mollow. In this approach essentially each of the manifolds is projected into a single

“sum” of all manifolds and an emission spectrum is calculated. That emission spectrum is

given by Fig. 5.1b and shows three peaks seperated by the Rabi splitting. As there are two

resonant transitions permitted the central peak is larger than the sidebands. Despite being

in a classical statistical regime there are a variety of quantum effects provided by the Mollow

triplet including radiative cascade and photon antibunching. [160, 162].

5.1.2 Quantum Limit

In the quantum statistical regime the dispersion of photon number for coherent states

becomes a significant effect as < n >∼ σn ∼ 1. The Poisson distribution defining a coherent

state becomes antisymmetric with respect to photon number. The strong coupling regime
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is characterized by a Rabi-nutation with the collapse and revival of the two-level systems

excitation level. At low excitation levels the dispersion in photon number is a significant

effect and the Rabi-oscillations from each excitation manifold will beat at incommensurate

frequencies. The measurement of the spectrum (Fig. 5.2a), in an atomic system, provided

the first direct observation of field quantization of the electromagnetic field [20, 163]. As

before, the state of the system is a superposition of states

|ψ〉 = cg,0|g, 0〉+
∞∑
n=0

[cg,n+1|g, n+ 1〉+ ce,n|e, n〉]. (5.14)

Plugging this wavefunction into the Schrodinger equation, the dynamics of state |e, n〉 can

be calculated from Eq. A.13. The time evolution for the two-level system to be excited

is found to be Pe,n =
∑∞

n=0Cn cos2 g
√
n+ 1. The coefficient Cn describes the statistical

dispersion of the electromagnetic field, exponential for a thermal field, and Poissonian for

a coherent field [163]. The eigenenergies follow from Eq. 5.10 with the exception that the

Rabi splitting Ωn =
√

4g2n+ (ωA − ωL)2 is no longer quasi-constant. At low excitation

levels the discrete nature of this evolution
√
n+ 1 is observable as the energy spacing in

Pe,n becomes asymmetric (Fig. 5.2 b,c). The measurement of this scaling with photon

number has become a hallmark of strongly-coupled cavity QED systems [20, 163–165]. A

current source of fundamental interest is the extension of the strong coupling regime to the

ultrastrong coupling regime wherein the Rabi frequencies are a significant fraction of the

resonant frequency and the rotating wave approximation breaks down [156, 166].

5.2 Strong Coupling of the Electromagnetic Field to a Collective Ensemble

of Two-Level Systems

The problem of extending the strong coupling regime to collective ensembles was stud-

ied in detail by Tavis-Cummings [167, 168] where exact solutions were calculated. Since then

this problem has been studied to understand the energy spectrum and to include effects like

Kerr or Stark shift nonlinearities [121, 135, 169–171]. Renewed interest in this model is driven
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Figure 5.2: The quantum regime of the Jaynes-Cummings Hamiltonian. a.) Representation
the few excitation manifolds as a function of detuning. Each manifold ζ consists of two states
coupled by manifold dependent Rabi splitting. The uncoupled states are denoted by dashed
black lines. b.) The frequency components of the probability amplitude Pe,n showing a non-
uniform spacing. These Fourier components amplitude depend on the statistical distribution
of the photons in the cavity. c.) The Rabi frequency dependence shows curvature for small
excitation levels before becoming more linear at higher excitation levels.

by the possibility of including many-body interactions. Many-body interactions may enable

the possibility of a photon blockade, using three-dimensional confinement of the electro-

magnetic field, to create ideal single-photon sources while enjoying the benefits of collective

systems such as a larger Rabi frequency [127, 172, 173]. Additionally, the availability of a

blockade open the possibility to study single excitation states in both semiconductors and

atoms excited by classical light [127, 172, 173].

The Tavis-Cummings Hamiltonian describes a collective ensemble of two-level atoms

strongly coupled to the electromagnetic field and in the absence of many-body interactions.

In general single-mode descriptions of the exciton strongly interacting with a single mode

of the quantized electromagnetic field reduce to dynamics of the Tavis-Cummings type and
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leads to the concept of the exciton-polariton. However for exciton-polaritons the dynamics

are modified by the Coulomb-meditated many-body interactions. These interactions are

insufficiently strong to provide the quantum statistical regime that an exciton-blockade could

produce while being strong enough to dominate the optical response leading to extensive

studies [27, 51, 79, 142, 174–176, 176–191].

In an excitation basis, after reducing the “fermionic” operators to “bosonic” [149, 150,

169] the Tavis-Cummings Hamiltonian is given by [150]:

H = ~ωLa†a+ ~ωxb†b+ ~g
√
N(a†b+ b†a) +Hc. (5.15)

where ωx is the exciton transition frequency, ωL is the laser frequency, N is the num-

ber of two-level systems, g
√
N is a collective Rabi frequency and a(b) represent the pho-

ton(exciton) operators. Here Hc represents corrections to the Holstein-Primakoff transfor-

mation due to bosonization. The bosonization proceadure is most appropriate in a large N

limit where the Hc term is often dropped. Just like for the Jaynes-Cummings picture there

exists a coupling at each excitation manifold, and the spectrum of the Tavis-Cummings

system is determined by the transitions between these manifolds. In the Tavis-Cummings

system the coupling at each excitation manifold changes less dramatically than in the Jaynes-

Cummings system. If we denote the exciton excitation level by nx and the field excitation

level by nc then the coupling at each excitation level is given by:

Hnx,nc = g
√
N − nx

√
nc
√
nx. (5.16)

Here the
√
N − n, is due to corrections in the Holstein-Primakoff transformation while the

√
nc
√
nx is due to the bosonic nature of the ensemble-field operators. The Tavis-Cummings

system has a very different energy spectrum than the Jaynes-Cummings system. The Tavis-

Cummings system at low excitation levels, for a large number of two-level systems, resembles

that of two coupled quantum harmonic oscillators.
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5.2.1 Energy Spectrum of Tavis-Cummings Hamiltonian

To determine the dressed states and the spectrum of the Tavis-Cummings Hamiltonian

we begin by defining uncoupled product-basis wavefunctions.

|ψx〉 = |nx〉|nc〉. (5.17)

Here nx(nc) is the number of excitations in the ensemble(cavity). The first excitation

manifold occurs when n = nx + nc = 1 and it’s Hamiltonian is

Hζ=1 =

 ~ωx ~g
√
N

~g
√
N ~ωc

 . (5.18)

Diagonalizing this matrix yields new modes of the coupled system

λn=1 =
(~ωx + ~ωc)± ~

√
δ2 + 4Ng2

2
(5.19)

along with their corresponding wave functions at zero-detuning:

|+〉 =
1√
2

[|1, 0〉+ |0, 1〉] (5.20)

|−〉 =
1√
2

[|1, 0〉 − |0, 1〉]. (5.21)

As a coupled system it becomes apparent that at zero-detuning the new eigenstates are

equally weighted superposition states of ensemble-field just like for the Jaynes-Cummings

system previously discussed. At the n = 2 level the block-diagonal Hamiltonian is

Hζ=2 =


~(ωc + ωx) ~g

√
2
√
N − 1 ~g

√
2
√
N

~g
√

2
√
N − 1 2~ωx 0

~g
√

2
√
N 0 2~ωc

 . (5.22)

.
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In the limit of a very large number of oscillators
√
N − 1 reduces to ∼

√
N . Diago-

nalizing the n = 2 matrix, under the assumption that N is large, produces the three new

eigenmodes

λ
′

n=2 = (~ωx + ~ωc) + ~
√
δ2 + 4Ng2 (5.23)

λ
′′

n=2 = (~ωx + ~ωc)− ~
√
δ2 + 4Ng2 (5.24)

λ
′′′

n=2 = ~(ωx + ωc). (5.25)

It becomes apparent from there energies that one mode has the energy of the cavity-

excitation level without any Rabi-splitting, while the other two modes exhibit Rabi splittings

comparable to the first excited manifold. The n = 2 wave functions at zero-detuning are

given by:

|+ +〉 =
|2, 0〉+ |0, 2〉+

√
2|1, 1〉

2
(5.26)

| − −〉 =
|2, 0〉+ |0, 2〉 −

√
2|1, 1〉

2
(5.27)

|+−〉 =
|2, 0〉 − |0, 2〉√

2
. (5.28)

The form of these wavefunction is the combination of states available from the first

excitation manifold needed to obtain a wavefunction at twice the energy. Thus the |++〉 state

consists of two |+〉 excitations and the |+−〉 state consists of a |+〉 and a |−〉 excitation. This

immediately motivates an understanding of the spectrum of this Hamitonian. Transitions

between excitation manifolds can only occur at the new normal mode frequencies defined by

the eigenenergies of the first excitation manifold. In the large N limit there is no appreciable

difference in the transition energies even at low excitation density. The energy spectrum and
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Figure 5.3: The few-excitation regime for both the Tavis and Jaynes Cummings Hamil-
tonians. a.) Representation the first few excitation manifolds of the Jaynes-Cummings
Hamiltonian at zero-detuning. Each manifold ζ consists of two states coupled by a man-
ifold dependent Rabi splitting. The manifold-dependent Rabi splitting leads to unequal
transitions energies creating significant nonlinearities at the single-photon level. b.) Rep-
resentation of the first few excitation manifolds of the Tavis-Cummings Hamiltonian. In
the large ensemble at low excitation limit the manifold-dependent Rabi splitting is nearly
constant. This leads to approximately equal transition energies which removes the single
and few-photon nonlinearity.

transition energies of the first few excited states are illustrated in Fig. 5.3a-b for Jaynes-

Cummings systems and for Tavis-Cummings systems in the large N limit.

The Tavis-Cummings system is the collective extension to the Jaynes-Cummings sys-

tem. For both systems to be in the strong coupling regime the Rabi frequency must be larger

than the irreversible decay of the ensemble-cavity system. In the case of Jaynes-Cummings
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this leads to the strong coupling condition

g � γx, γc (5.29)

For the Tavis-Cummings system the strong-coupling condition is [150, 192–194]

g
√
N � γx, γc. (5.30)

This second condition is a much less stringent condition than for a Jaynes-Cummings

system and motivates why modern studies of Tavis-Cummings like systems are interested

in achieving phenomena like a Rydberg or exciton blockade. A designed system achieves

the benefits of a collective coupling strength while leveraging the many-body interactions to

alter the large ensemble Tavis-Cummings system to a single-photon nonlinearity regime.

In semiconductor exciton-polaritons it is possible to have multiple quantum wells con-

tribute to the collective strong coupling. For this situation the Rabi splitting is enhanced

by a factor
√
NQW [195]. If a single quantum well has N [156] electrons contributing to

the coupling strength then coupling of NQW will have N ∗ NQW electrons contributing to

the coupling strength. This scaling is true provided the quantum wells are placed near an

antinode of the cavity, placing the well too far away will result in the well not being strongly

coupled. [195]. A confusing point in excitonic systems is that changing the spot size does

not increase the Rabi splitting. However, this is consistently treated by realizing that the

oscillator strength or Rabi frequency of excitonic and atomic systems is always normalized

by the mode volume [194, 196–198]. For this reason this N · NQW is often referred to as a

density in excitonic systems.

5.2.2 Quantum Limit of the Tavis-Cummings System

Our discussion of Tavis-Cummings has been concerned with large ensembles. With

large ensembles the anharmonicity present in the Jaynes-Cummings system is removed. To
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quantitatively evaluate the degree of remaining anharmonicity we follow the approach of

Thompson-Kimble [21] who experimentally and theoretically studied the Tavis-Cummings

ladder for N = 2 atoms. They introduced a parameter known as the ”quantum anharmonic-

ity”. The quantum anharmonicity parameter q is the ratio of the second excited state to

first excited state splitting and is

qa =
g
√

4N − 2

2g
√
N

. (5.31)

For N = 1 the Tavis-Cummings ladder reduces to that of the Jaynes-Cummings and the

anharmonicity parameter q = .71, while as N →∞, q → 1. For N = 2 the anharmonicity of

the Tavis-Cummings ladder has not been observable. A rough estimate of this anharmonicity

for semiconductor exciton-polaritons can be calculated as follows. In a typical semiconductor

quantum well the excitonic density is large (Eq. 4.19), if excited by a 50µm spot size ∼ 107

electrons form the excitonic response. This places the exciton-polariton firmly in a large N

and near-classical regime. Multiplying the quantum anharmonicity by a transition energy

provides a rough estimate of the anharmonicity in units of energy. This energy is on the

scale of neV. Many-body interactions in exciton-polaritons which have been reported at the

∼ 10µeV level indicating that these interactions dominate the anharmonic optical response

of exciton-polaritons [184, 186, 191].

5.2.3 Saturation of the Tavis-Cummings System

A characteristic of the Tavis-Cummings system is that it saturates with sufficient ex-

citation density. And as it saturates the Rabi splitting decreases until the strong coupling

is lost. This has been observed both in atomic and semiconductor systems. The collective

dipole scales as µ ∼
√
N − n and at high excitation density n becomes appreciable leading

to this strong coupling loss. For semiconductors this can be more complicated. The exciton

can transition to an electron-hole continuum [158]. Strongly-coupling a semiconductor quan-
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tum well to a cavity and screening the oscillator strength has proven to be one of the best

methods for measuring the oscillator strength of the quantum well exciton [158, 196, 198].

The saturation of strong coupling is at high excitation density is shown in Fig. 5.4a-b for

both atoms and exciton-polaritons.

Figure 5.4: The saturation of a strong-coupling in collective systems is shown here for both
semiconductor exciton-polaritons and atoms. a.) The saturation of strong-coupling for six
InGaAs QW’s in a Fabry-Perot(Bragg) cavity. Multiple quantum wells leads to an additional
enhancement by

√
NQW of the transition dipole moment. b.) The saturation of the strong-

coupling regime for 220 atoms in a Fabry-Perot cavity. Figures adapted from [158, 199]

5.2.4 Classical Perspective on the Tavis-Cummings System and Strong Cou-

pling

The Tavis-Cummings system is interesting as a model to understand collective strong-

coupling. As previously discussed for large ensembles the Tavis-Cummings model exhibits

negligible single-photon anharmonicity. This leads to the question of how is the Tavis-

Cummings system different from a classical normal-mode system. One main difference ap-

pears to be in the ability of the Tavis-Cummings system to saturate and remove the strong

coupling, an effect not present in simple classical harmonic oscillators. However, this sat-
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uration is the result of the finite number of TLSs and has little to do with the quantum

nature of light. A quantum effect only attainable with the Tavis-Cummings system is that

of a quantum phase-change for very-strongly coupled systems. This phase-change has been

observed in atomic systems [128].

Of significant importance is that no higher lying excited states have been reported for

a Tavis-Cummings system. The reason is that for large ensembles the transition energies are

largely degenerate, so pump-probe spectroscopy would have to look for very small changes

in transition energy in order to observe the quantum nature of light [21]. As pointed out

by Carmichael et al.[199], the presence of normal modes between a cavity and absorbing

medium as evidenced by a vacuum Rabi splitting is not sufficiently unique to distinguish

between a classical or quantum system. The issue being that the first order susceptibility of

a semi-classical or fully quantum system is the same as that of a classical harmonic oscillator.

A cavity is a reasonable physical approximation of classical harmonic oscillator and thus the

coupling of an absorber to a cavity can be understood through simple classical normal-mode

coupling. This result is derived in Appendix (B).

5.2.5 Outlook for Spectroscopy and Characterization

Although it may be impossible with current measurement techniques to measure the

anharmonicity of the intrinsic Tavis-Cummings system [21], it is possible to consider the

role of many-body interactions and optical nonlinearities that are not due to saturation

of the oscillators [127, 172, 173]. In the case of very small many-body interactions multi-

quantum spectroscopy is an extremely sensitive tool to record deviations from the degeneracy

of transitions. Unlike in pump-probe techniques there is no signal without these interactions.

The extent of these deviations should characterize if realistic quantum optical behavior can

be expected or engineered from a system under study. In this case exciton-polaritons are an

ideal candidate. The intrinsic exciton-polariton Hamiltonian reduces to that of the Tavis-

Cummings type in the absence of many-body interactions and exists firmly in a large N
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limit. Proposals to implement quantum blockades in Tavis-Cummings type systems resort

to strong many-body interactions the simplest of which is to create a photonic dot coupled

to a semiconductor quantum well [172]. Unfortunately, none of the characteristic strong-

coupling studies have been performed on exciton-polaritons due to this issue of transition

degeneracy leaving the information about it’s strong-coupling structure incomplete.



Chapter 6

Measurement of the Higher-Order Exciton-Polariton Dispersion

In semiconductor cavity electrodynamics the regime of strong-coupling is characterized

by a vacuum Rabi-splitting between a semiconductor optical absorber and a light field.

The strong-coupling regime for confined excitons in semiconductor quantum wells was first

achieved by Weisbuch [19]. The device grown consisted of quantum wells grown at the

antinode of a Bragg microcavity. The quantum confined exciton provided sufficient oscillator

strength to strongly-couple to the cavity, creating a set of new normal modes known as the

exciton-polariton. Unlike exciton-polaritons previously observed in bulk semiconductors, the

use of a semiconductor quantum well grown inside a microcavity allowed for the tailoring of

the strong coupling. The ability to tailor the strong-coupling regime created a solid-state

system capable of exploring quantum electrodynamic effects previously only accessible in

atomic systems [192–194, 200–202].

As the experimental conditions for both atomic and solid-state systems improved it

became clear through nonlinear experiments that the quantum statistical regime, [163, 200],

where the optical properties are changed by the addition of a single photon or oscillator,

was not accessible in semiconductor quantum well exciton-polaritons (hereafter exciton-

polaritons) [13, 18]. The exciton, as a collective system, is capable of supporting many

excitations before saturation. By contrast, all approaches that have achieved the quantum

statistical regime rely on a single two level system that saturates with the absorption of a

single photon [21, 161, 163, 203, 204]. Since the first observation in atomic systems the quan-
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tum statistical regime has been observed in circuit-quantum electrodynamics [20, 164, 166]

and signatures of this regime have been observed in quantum-dot microcavity systems [165].

Strongly coupled systems exhibiting nonlinearities at the single-photon level are described

by Jaynes-Cummings dynamics [161]. Strong coupling not in a quantum statistical regime is

commonly referred to as collective strong coupling or non-perturbative normal mode coupling

in an attempt to differentiate it from the quantum statistical strong-coupling regime.

Despite not being able to access the quantum statistical regime exciton-polaritons

have demonstrated a variety of quantum effects. These include Bose-Einstein condensation

[14, 205] and superfluidity [155, 195]. Of significant interest is the engineering of exciton-

polaritons into devices that leverage their collective properties. Such devices include quan-

tum lattice simulators [206] and micropillars where spin-squeezing [207] has been observed.

An unrealized, but novel approach to a non-classical light source proposes leveraging the

many-body interactions and the collective strong coupling of exciton-polaritons to achieve

an excitation blockade at the single-photon level [172].

Before engineering a quantum optical application based on exciton-polaritons it is

vital to understand the bare system. A common measurement, for strongly coupled systems

in the quantum statistical regime, is to record an avoided crossing at different excitation

manifolds or to observe beating between different excitation probabilities at several manifolds

(Ch.5.1.2). These measurements then map the strong coupling as a function of statistical

dispersion in excitation level. Analogous measurements for the exciton-polariton have proven

difficult. Unlike in systems described by Jaynes-Cummings dynamics, the Rabi splitting in

exciton-polaritons is nearly constant at low excitation density making it extremely difficult

to resolve beating between different excitation manifold probabilities. Nonlinear pump-probe

style experiments are also insensitive because the Rabi frequency is nearly constant at low

excitation density and because exciton-polaritons have no change in absorption at the single

photon level. Additionally, most characterization of exciton-polaritons have been done at

relatively high excitation density while most quantum statistical effects occur in the few
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quanta regime.

Here we have implemented a novel measurement scheme to characterize the strong

coupling for differential excitation manifolds. We use multidimensional coherent photocur-

rent spectroscopy to measure excitation manifolds ∆n = 1, 2, 3, where ∆n is the difference

between excitation manifolds, as a function of exciton-cavity detuning in the weak excita-

tion regime. From these spectra we are able to measure higher-order dispersion relations

that characterize the strong coupling at each ∆n manifold. Our measurements show that

exciton-polaritons, at low excitation density, are nearly harmonic quantum oscillators. These

results provide qualitative information about the system characteristics needed to engineer

quantum optical effects.

6.1 Background

The statistical variance(dispersion) of excitations for a collective ensemble strongly

coupled to the electromagnetic field was first theoretically considered by Tavis and Cummings

[167, 168, 170]. This analysis provided evidence for both a quantum and classical statistical

regime. The quantum regime is most evident for a single-two level system where the Tavis-

Cummings Hamiltonian reduces to that of the Jaynes-Cummings Hamiltonian. Although

technically the quantum regime is still applicable for N > 1, exhaustive studies, in ideal

systems, have shown that even at N = 2 no quantum statistical effects can be observed [21].

The classical regime occurs in the limit that the number of collective oscillators N becomes

large or in the regime that the number of photons becomes large. The classical regime is

characterized by the statistical dispersion of either the oscillators or the photons such that

the system is well described by an average coupling.

Exciton-polaritons do not represent an ideal system described by the Tavis-Cummings

Hamiltonian. The Tavis-Cummings model, in the classical limit, only captures the Rabi-

splitting and eigenmodes of the exciton-polariton system. The model incorrectly describes

the optical response predominately because exciton-polaritons have been known to exhibit
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strong optical nonlinearities due to exciton-exciton interactions. And unlike ideal systems,

as the exciton density bleaches the system converts into an electron-hole plasma [13, 158].

This process changes the nature of the optical absorber from consisting of discrete levels to

a continuum. Additionally, semiconductor quantum wells are known to experience spatial

disorder that can decrease the collective properties of the exciton. In the highly disor-

dered limit the excitons become localized “quantum dots”, a two-level system [67, 82, 208].

The single-mode exciton-polariton Hamiltonian describing the eigenmodes and capturing the

many-body interactions is [12, 153]:

H = ~ωXb†b† + ~ωγa†a† + ~g0(a†b+ b†a) +
1

2
VXXb

†b†bb+ Vsat(a
†b†bb+ h.c.). (6.1)

Here a†(a) are the bosonic photon creation(annihalation) operators, b†(b) are the

bosonic exciton creation(annihalation) operators, 2g0 is the collective vacuum Rabi fre-

quency, VXX is the exciton-exciton interaction energy and Vsat is the exciton saturation

energy given by ~g0
nsatA

where nsat is the exciton saturation density and A is the area of the

quantization. In the low density limit of a perfectly ordered quantum well, the many-body

interactions break the symmetry in the excitation ladder allowing for non-destructive inter-

ference of the multi-quantum pathways measured here. In semiconductor quantum wells,

the excitonic dispersion is effectively flat, ωx(k) = ωx. The cavity modes vary with in-plane

wavevector (Eq. 1.21) resulting in a cavity dispersion that is parabolic in incident excitation

angle, ωc(k) ∼ θ2 near normal incidence. The exciton-cavity photon interaction results in

an avoided crossing when the exciton and cavity-photon resonances intersect at the zero-

detuning excitation angle θ0 as shown in Fig. 6.1. Since the exciton-exciton interactions are

perturbative, these dispersion curves are dominated by the eigenmodes of the exciton-cavity

coupling. For exciton-polaritons, all of the transitions in the expected ladder of states are

degenerate doublets. The higher rungs in the expected ladder of states is expected to demon-

strate multiple avoided crossings between the bare exciton-cavity modes at zero-detuning.



114

ω
B ω

A

h̄
ω
τ
(m

e
V

)

(meV)δ ħω
c
- ħω

x

θ (Degrees)

1480

1470

1460

1465

1455

1475

10 15 20 25 30

-7.5 -5.0 0 5 7.5

h̄
ω
τ
(m

e
V

)

γ

UP
LP

X

(Degrees)

1456

1460

1464

1468

1472

0 5 10 15 20 25 30 35

θ

a.)

1455 1460 1465 1470 1475 1480 1485

b.)

c.) d.)

A
m

p
lit

u
d
e
 (

A
rb

)

h̄ωτ (meV)

Figure 6.1: a.) Two-pulse excitation scheme to study exciton-polaritons via photocurrent
Fourier transform spectroscopy. The signal is recorded as a function of inter-pulse delay
τ . b.) Linear absorption spectra are generated by Fourier transforming the time-domain
signal with respect to τ . The spectrum shown here was taken at zero detuning and shows a
Rabi splitting of ∼ 5meV between the upper and lower polaritons. c.) Calculated dispersion
curves for exciton X, cavity γ and the strongly coupled normal modes UP and LP. d.)
Contour map of the linear absorption spectra as a function of detuning (top) and excitation
angle (bottom) axis. Spectra are normalized to the peak amplitude on a scale of 0→ 1.

In general, the collective coupling strength is determined by g0 where 2g0 is the collec-

tive Rabi frequency, Ω. In semiconductor quantum wells, the addition of N quantum wells
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enhances the collective coupling [195, 197] providing a system-dependent coupling strength.

The collective strong coupling condition is fulfilled when the photon-exciton coupling g satis-

fies the condition 2g
√
NQW � γx, γc where γx, γc are the excitonic dephasing rate and cavity

decay rate [192, 194].

6.2 Sample Structure

Our sample is a device built by our collaborators to demonstrate optical bistability and

an electrically injected exciton-polariton LED [209, 210]. The sample consists of a micro-

cavity with doped mirrors grown by molecular beam epitaxy on a n-doped GaAs substrate

(Fig. 6.2a). The mirrors are made by alternated Ga0.9Al0.1As/Ga0.1Al0.9 layers. The bot-

tom mirrors contains 24 pairs and is n-doped using silicon, the top mirror contains 20 pairs

and is p-doped using carbon. The p-doped Bragg mirror is completed by a highly-doped

p++ GaAs thin top contact layer. Aluminium graded concentrations at each interface in

the Bragg mirrors are introduced to optimize mirror resistance. The GaAs cavity contains

three In0.05Ga0.95As quantum wells at the antinode of the field. The cavity layer is undoped

to maintain the excitonic character of the quantum well excitations. The thickness of the

cavity layer smoothly varies across the sample in order to tune the cavity mode with the

exciton resonance.

Square mesas of 300 µm lateral size were etched down to the GaAs substrate using

e-beam lithography followed by wet chemical etching. The mesas were defined at different

positions of the wafer, thus obtaining different detunings between the cavity mode and the

excitonic transition energy. Annular contacts were defined by e-beam lithography and Ti-Au

evaporation (220 nm in thickness) on the top of the sample (Fig. 6.2b). In order to obtain

a spatially homogeneous current flow, the internal part of the contacts is completed with a

semitransparent (transmission ∼ 40 %) 13 nm Ti-Au layer. A uniform AuGeNi contact was

evaporated and alloyed on the backside of the wafer [210].
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Figure 6.2: a.) Sample structure used for exciton-polariton experiments. The top mirror is
a p-doped Bragg stack. The bottom mirror is a n-doped Bragg stack. The diode is etched
into a mesa with top and bottom electrical contacts. b.) SEM picture of a wire-bonded
exciton-polariton mesa.

6.3 Experimental Setup

In order to record MDCS spectra as a function of exciton-cavity detuning we built

additional apparatus after our final beamsplitter. Exciton-polaritons are tuned by use of the

wedged cavity thickness [19] or by varying the incident excitation wavevector [197]. Both

approaches rely on changing the optical path length in the cavity. The wedged cavity method

is a poor choice for photocurrent spectroscopy as contacts on a large lateral surface lead to

poor device physics. We make use of the dispersion properties of the cavity to vary the

exciton-cavity detuning. The cavity energy varies with the in-plane wavevector k|| of the

incident light (Eq. 1.21). The in-plane wavevector can be tuned by the angle of the incident

angle of light from the relation [14]

k|| = nc
2π

λ
tan

[
sin−1

(
sin(θ)

nc

)]
∼ 2π

λ
θ. (6.2)

To vary the incident excitation angle we position a translation stage before a two-inch diam-

eter, 5cm focal length aspheric lens. We then translate the position of the beam across the
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lens to vary the excitation angle. This lens choice provides ∼ 27° of range (Fig. 6.3). We

also rotate the sample by ∼ 7° in order to provide scanning range after the exciton-cavity

avoided crossing that occurs at ∼ 23°.

Figure 6.3: Experimental configuration for scanning the exciton-cavity detuning. The final
beamsplitter combines all four pulses from the MDCS experiment. They are then spatially
translated across the 5cm aspheric lens using a translation stage. The sample is rotated by
∼ 7°.

6.4 Linear Characterization of Exciton-Polaritons

To characterize the exciton-polariton Rabi splitting we use a simplified two-pulse ex-

periment to record linear absorption spectrum as a function of excitation angle(detuning)

θ(δ) (Fig. 6.1a). At zero-detuning δ = ~ωc − ~ωx = 0 the linear absorption spectra exhibits

two peaks split by a Rabi frequency Ω ∼ 5meV. These two peaks in Fig. 6.1b are the high

energy and low energy normal modes of the strongly coupled system and are referred to as

the upper polariton (UP) and lower polariton (LP). At zero-detuning the upper and lower

polaritons are equally weighted superpositions of exciton and cavity. As the excitation angle

is varied the absorption spectrum should exhibit an avoided crossing between the exciton (X)

and cavity (γ) dispersion as calculated in (Fig. 6.1c). As the excitation angle decreases from

zero detuning, the relative weighting of exciton to cavity of the upper polariton wavefunc-
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tion should asymptote to favor excitonic character. In contrast the lower polariton should

asymptote to more cavity character. At larger excitation angle, above zero detuning, the

opposite behavior should be observed where the upper polariton becomes cavity-like and the

lower polariton becomes exciton-like. For detunings |δ| � ~Ω the more excitonic mode is

the AC Stark shift of the bare exciton. By measuring the linear absorption as a function

of excitation angle we are able to verify that our calculations from Eq. 6.1 agrees with our

measurement (Fig. 6.1d).

Our measurements are insensitive to definite excitation numbers because our modula-

tion scheme integrates over a range of excitation manifolds. The optically active transitions

between excitation manifolds require transitions that satisfy ∆n = 1. Therefore our spec-

trum is sensitive to the relative difference in excitation manifolds ∆n = 1 across a range of

excitation manifolds that goes from n = 0 → n ∼ εβE2

2~ωL
. In this excitation density, ε is the

dielectric constant, ωL is the center laser frequency and β is the external field-cavity coupling

fraction. Our nonlinear measurements are sensitive to the relative ∆n = 2, 3 difference in

excitation manifold depending on the pulse sequence used. However these are non-radiative,

and our observation of them is only made possible through MDCS where the coherences

between these higher order excitation manifolds are mapped onto radiative transitions.

6.5 MDCS of Exciton-Polaritons

Our characterization measurements presented linear spectra recorded by two incident

pulses and Fourier-transformed with respect to the interpulse delay τ . A unique advantage

of our approach is that conventional optical nonlinear spectroscopy relies on wavevector

selection to isolate nonlinear signals. In polaritonic systems, non-collinear methods imply

a mixing of different polariton wavevectors [174, 182, 187, 188]. Our collinear apparatus,

which isolates non-linear signals in the radio frequency domain [49, 91, 92] circumvents

this issue allowing us to study wavemixing within a single k mode of the exciton-polariton

system. To perform multi-quantum MDCS experiments we use all four pulses prepared by
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our nested interferometers (Fig. 3.3) and depicted in Fig. 6.4a. In a two-quantum coherence

(∆n = 2) experiment [42, 47, 145, 147, 188] a sequence of pulses excites the sample. The

first pulse (A) creates a one-quantum coherence between the nth excitation manifold and the

(n+1) manifold. This coherence is subsequently converted by pulse (B) into a two-quantum

coherence between the (n + 2) manifold and the (n)th manifold during time T. The third

excitation pulse (C) converts this two-quantum coherence into a one-quantum coherence

between the (n+ 2) manifold and the (n± 1)th manifold. In this experiment, a fourth pulse

converts this coherence into a population state where it is read out as photocurrent. The

population produces a photocurrent because a small forward bias of 1.4V provides a field

that separates the charges that make up the polaritons.

The experiment [92] uses four co-circularly polarized 100 fs pulses (Fig. 6.4), that have

been radio-frequency shifted relative to each other. Third and fifth order nonlinear signals are

collected as a modulated photocurrent. The fifth order signal can be measured by considering

higher order wave-mixing signals and synthesizing an appropriate reference. The signal is

recorded as a function of angle and the inter-pulse time delays T and t with τ = 0. The signal

S(θ,T,t) is Fourier-transformed with respect to T, t to provide S(θ,~ωT,~ω t). The multi-

quantum coherence evolves during the time delay T and is sensitive to ∆n > 1 coherences.

In Fig. 6.4b we plot the absolute value of two-quantum (∆n = 2) MDCS spectra recorded

at zero-detuning δ = 0. The MDCS spectra reveals four peaks split by the Rabi frequency

Ω. The two diagonal peaks correspond to the lower and upper polariton modes. The two

off-diagonal peaks represent a state that is a mixture of the lower and upper polariton modes.

This state has two quantum pathways, it can radiate at either the upper polariton energy

or the lower polariton energy. The projection onto the ~ωτ axis shows the spectrum that

conventional spectroscopy techniques are sensitive to; the two mode frequencies UP and LP

corresponding to ∆n = 1 coherences. The projection onto ~ωtau shows that the spectrum

that two-quantum coherences are sensitive to; the frequencies corresponding to ∆n = 2

coherences. The real part of the MDCS spectrum is shown in Fig. 6.4c. All four peaks are
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Figure 6.4: a.) Four pulse excitation scheme to study exciton-polaritons via photocurrent
Fourier transform spectroscopy. The signal is recorded as a function of inter-pulse delays
t and T with τ = 0. b.) Absolute two-quantum MDCS spectrum generated by Fourier
transforming the time-domain signal with respect to t and T . This plot reveals two diagonal
peaks and two off-diagonal peaks. c.) The real part of the MDCS spectrum reveals that
absorptive peaks. Absorptive peaks are an indication of excitation induced dephasing or
Pauli blocking.

dominantly absorptive Ch.2 as indicated by their positive phase indicating that excitation

induced dephasing or Pauli blocking is the primary many-body interaction responsible for
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breaking the symmetry in the quantum pathways at zero detuning.

We calculate and plot Fig. 6.5a-b, for low excitation density where the quantum well

exciton is not screened by electron-holes pairs [158], the bare and coupled ∆n = 2 cavity-

exciton modes from Eq. 6.1 as a function of excitation angle θ. The bare modes intersect at

the zero-detuning angle, where the coupled modes demonstrate a double avoided crossing.

Each of the avoided crossings is predicted to have a Rabi splitting Ω of 5meV. In order to

isolate and measure these avoided crossings using multi-quantum spectroscopy we record

MDCS spectra as a function of excitation angle θ. We then integrate the measured signal

along ~ωt and plot the frequency integrated FWM spectrum as a function of excitation angle

(Fig. 6.5c). Our measurement matches our calculations exhibiting two avoided crossings at

zero-detuning ∼ 23°. The observed spectrum corresponds to pairs of polaritons labeled U2P

for two upper polaritons, L2P for two lower polaritons and M2P for a mixture of upper

and lower polariton. Within the resolution of the experiment, the Rabi splittings in the

two-quantum spectrum match those in the linear spectrum. In other words the L2P peak is

observed at twice the lower polariton energy, the U2P peak is observed at twice the upper

polariton energy and the M2P peak is observed at the sum of the upper and lower polariton

energies. This result is only expected if our measurement occurs at sufficiently low excitation

density so as not to screen the excitons. We also calculate the expected dispersion for ∆n = 3

coherences (not shown) and find that we expect six peaks in the absolute MDCS spectrum.

Two of the six peaks are expected to be along the diagonal and four off the diagonal. The

four off-diagonal peaks, like the off-diagonal peaks of the two-quantum coherence, represent

mixed states with two quantum pathways capable of radiating into either an upper or lower

polariton. We performed a higher order three-quantum coherence measurement and plot the

frequency integrated six-wave mixing as a function of excitation angle in Fig. 6.5d. The

measurement agrees with our calculation showing a triply avoided crossing between four

modes each with a Rabi splitting of 5meV. We discuss the power dependence of this data

in Section(6.6). The spectra at different powers exhibits no deviation from that presented
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here.

The series of spectra recorded ∆n = 1, 2, 3 has the eigenstructure expected for two

coupled quantum harmonic oscillators. However, coupled quantum harmonic oscillators

are not expected to produce nonlinear wave mixing signals due to destructive interference

of quantum pathways [211, 212]. Excitons are composite bosons at low excitation density;

corrections to the bosonic approximation take the form of many-body interactions that break

the symmetry in the quantum pathways and enable the observation of these multi-quantum

coherences. The analogous strongly coupled atomic system would require significant atomic

collisions or dipole interactions [127, 173, 213, 214] to produce sufficient nonlinearity to break

the symmetry observed here [215].

Since the many-body interactions are perturbative we are able to consider the dressed

states involved in the transitions. In the exciton-polariton eigenbasis the nth manifold has

an excitation level

n = nUP + nLP . (6.3)

The wavefunctions at the nth manifold are combinations of UP and LP with wave-

functions |nUP , nLP 〉 = |nUP 〉 ⊗ |nLP 〉. The radiative transitions occur between ∆n = 1

of each excitation manifold. Thus the coherences that contributed to the linear absorp-

tion spectra are between states with the difference of a single polariton such as ρn,m =

|nUP , 0〉〈mUP , 0〉δn,m=n±1 where ρn,m is a density matrix element and n and m are two differ-

ent excitation manifolds each separately subscripted by Eq. 6.3. The single polariton wave-

functions can be solved from Eq. 6.1. In an exciton-cavity |nx, nc〉 basis at zero-detuning

they are the equally weighted superpositions

|UP 〉 =
|1, 0〉+ |0, 1〉√

2
(6.4)
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|LP 〉 =
|1, 0〉 − |0, 1〉√

2
. (6.5)

In the MDCS spectrum the peaks along the diagonal correspond to coherences between states

of only a single type of polariton either LP or UP . The off-diagonal peaks correspond to

mixtures of both UP and LP . During time t the coherences recorded are between states with

the difference of a single polariton. During time T higher order non-radiative coherences such

as ρn,m = |nUP , 0〉〈mUP , 0〉δn,m=n±2(3) exist for the two(three) quantum coherence. These

coherences evolve with the energy difference of two(three) polaritons. The two polariton

wavefunctions can also be solved from Eq. 6.1. In an exciton-cavity |nx, nc〉 basis at zero-

detuning they are

|U2P 〉 =
|2, 0〉+ |0, 2〉+

√
2|1, 1〉

2
(6.6)

|L2P 〉 =
|2, 0〉+ |0, 2〉 −

√
2|1, 1〉

2
(6.7)

|M2P 〉 =
|2, 0〉 − |0, 2〉√

2
. (6.8)

Of potential interest to engineering quantum optical devices is accessing the |M2P 〉

states deterministically. This state represents a NOON state with N = 2. NOON states are

of interest for accessing macroscopically entangled “Schrodinger cat states” that evolve with

a phase that is N times faster than classical states. These states are of fundamental interest

to studying decoherence on many-particle entanglement as well as enhanced measurement

sensitivity [216–219]. We expect there is series of such high-NOON states at n = even

excitation manifolds as our Hamiltonian is closely analogous to a quantum beamsplitter

[220] as discussed in Appendix(C).

Because of our detection scheme our measurement is not sensitive to specific coher-

ences; we are not able to deterministically achieve a quantum optical-few quanta limit.
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However, our modulation scheme samples all excitation manifolds integrating together the

multi-quantum coherences of many different excitation densities. Since the coherences from

different excitation densities sum together to provide our spectrum we expect that the lad-

der we have observed is symmetric all the way down to the few quantum regime. Varying

the peak excitation power provides no observable deviation in the recorded spectra. The

lowest peak excitation density for which we recorded two-quantum spectra is estimated as

∼ 3 · 108cm-2 (all four pulses coincident), more than two orders of magnitude below the

exciton-polariton saturation density [158].

6.6 Power Dependence Measurements

In order to characterize our measurement and the nonlinear regime for exciton-polaritons

we varied the peak excitation density and recorded a power dependence. The e−2 beam waist

is ∼ 45µm, the laser has a repetition rate of 76MHz and we calculated the cavity-external

field coupling to be 17%. The peak signal strength is recorded as a function of external

excitation power and plot the nonlinear regime in Fig. 6.6. In MDCS a four-wave mixing

signal (FWM) is recorded. In our detection scheme the FWM scheme should have a fourth

order power dependence. For reference this slop is plotted in Fig. 6.6.

The data recorded in Fig. 6.5 at zero-detuning was recorded at 6.4µW. The power was

slightly varied across different detunings in order to keep the linear absorption (measured

simultaneously) constant. Additional spectra was recorded at lower and higher excitation

density and exhibit no difference. The six wave dispersion curve of (Fig. 6.5d) was recorded

at a constant power of 85µW.

6.7 Conclusion

Our measurements explore the exciton-polariton ladder of states in the weak excita-

tion regime providing qualitative information about the energy structure of this system.

This structure is characteristic spectrum of two coupled quantum harmonic oscillators with
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perturbative nonlinearities due to Coulomb mediated many-body effects. While we are not

able to excite the system deterministically with few quanta, our spectrum is the integrated

sum of many excitation densities providing evidence for this structure over a large range of

excitation densities. Varying the peak excitation density provides no observable change in

the spectrum or Rabi splitting of the avoided crossings. Our measurement is made possible

by our use of multi quantum coherent spectroscopy and a novel approach that allows us

to excite exciton-polaritons in a single mode. In the context of quantum optics our results

explore the statistical dispersion of exciton-polaritons providing the energy eigenstructure

and dressed states. As an analogue to measurements performed in the quantum optical sta-

tistical regime our results present a new approach to characterizing the excitation statistics

of strongly coupled systems. This approach may be well suited to characterizing quantum

systems that are naturally in the quantum statistical regime.
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Figure 6.5: a.) Dispersion of uncoupled doubly excited exciton (2X) and doubly excited
cavity (2γ) pairs as a function of excitation angle. A dispersion curve of an exciton and a
cavity X + γ is included. At the avoided crossing angle θ0 all three energies are degenerate.
b.) Dispersion of strongly coupled exciton and cavity pairs as a function of excitation angle.
At θ0 a double avoided crossing is calculated. The new modes are pairs of upper polariton
(U2P), middle polariton (M2P) and lower polariton (L2P). The three new modes are split
with an energy of ∼ 5meV. c.) Frequency integrated four-wave-mixing plotted as a function
of excitation angle-detuning. The data exhibits three modes split by 5meV exhibiting a
doubly avoided crossing. d.) Frequency integrated six-wave-mixing plotted as a function of
excitation angle-detuning. The data exhibits four modes split by 5meV exhibiting a triply
avoided crossing.
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Chapter 7

Measurement of Polariton-Polariton Interactions

The optical response of semiconductor quantum wells is altered by many-body interac-

tions and exciton-exciton scattering. These interactions are polarization dependent and lead

to states such as the biexciton and the dropleton. A theoretical description of the biexciton

[47, 221–226] or dropleton [227] requires higher order many-body correlations, which are

not captured in a model that treats the polarization as arising from σ+(σ−) populations of

excitons [30, 228]. These higher body correlations are exemplified by the biexciton, which is

a four-particle state, whose binding energy is an appreciable fraction of the exciton binding

energy in GaAs. Historically, the difficulty of understanding the role of the biexciton led to a

rich exploration of many-body physics in semiconductors [30, 42, 47, 143, 221–226, 229–231].

In quantum wells, the co-polarized exciton has a significantly smaller interaction energy that

leads to four particle states that are correlated but not bound. Despite being smaller, it

is these interactions that have the most dramatic effect on excitons in the strong coupling

regime.

The interesting properties of exciton polaritons historically arose from co-polarized

interactions. In particular, superfluidity does not exist in bosonic systems without inter-

particle interactions [232–234] and these interactions are responsible for the blueshift and

optical nonlinearities in both polariton lasers and parametric amplifiers [174, 178, 183, 235].

The effect of these interactions on the optical response of exciton-polaritons is a difficult

topic due to the large effect of the cavity coupling. Since the cavity-exciton coupling creates
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new normal modes this effect must be considered first. However, transforming into a po-

lariton basis leads to truncated excitonic interactions providing only an effective polariton

many-body interaction potential. The role of higher order correlations, such as the one that

provides the biexciton, are even murkier. For instance, it is unclear if these correlations

create a biexciton that is decoupled from the cavity or if the biexciton is strongly coupled

to the cavity forming a biexciton-polariton or if two polaritons bind to form a bipolariton.

This problem is particularly difficult in GaAs-systems as the biexciton binding energy of

∼ 1.5meV is comparable to the Rabi energy of 5meV [177, 188, 191, 236–239].

Despite their importance, understanding of these interaction potentials remains poor.

As a result, recently there has been an improved effort to characterize these many-body

interactions [184, 186–189, 191, 240, 241]. Unfortunately, the experiments typically used

are not ideal to studying exciton-polariton interactions due to their reliance on wave-vector

matching or single-pulse differential transmission. The mixing of wave-vectors is a particular

problem since it requires a multi k-mode analysis of the polariton effectively mixing the

interaction potentials of a single mode with that of two-or more modes. Conversely, our

approach allows us to excite polaritons in a single mode providing a clear picture of polariton-

polariton interactions.

We have performed experiments on exciton-polaritons in both cocircular and crosscir-

cular regimes. In this chapter we review progress in these experiments. The first section

is concerned with experiments on cross-polarized exciton-polaritons where we attempt to

understand the role of the biexciton(or bipolariton). We find that neither a bipolariton

nor a biexciton is present for cross circularly polarized exciton polaritons. Therefore, our

results directly contrast with claims to observe these states [177, 237–239] . Interestingly,

we observe a change in the phase of our MDCS spectrum that is consist with the Feshbach

resonance reported by for high excitation density[191]. Additionally, we observe the same

behavior with a mixed upper and lower polariton state. Therefore, our results suggest a three

state interaction beyond the simple Feshbach resonance presented by [191]. Our ability to
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disentangle this interaction is limited by our understanding of the scattering process of the

polaritons. We excite these states at relatively high dispersion from which they can relax

to lower energy polaritons. In the second section we attempt to quantitatively measure the

cocircular polariton interaction constants. We devise a scheme to remove the effect of phase

space filling from the many-body interactions effect and fit our theory to the data.

7.1 Background on Many-Body Interactions

7.1.1 Exciton-Exciton Interactions in Quantum Wells

In semiconductors the exciton is a two-body low excitation density hydrogenic eigen-

state of the crystal. In the Heitler-London picture where the hole is treated as much heavier

than the electron, it is the electron-electron scattering that determines the exciton-exciton

scattering process. This scattering process leads to both repulsive and attractive interac-

tions depending on the spin of the electrons. The two scattering electrons can form either

symmetric (triplet) or antisymmetric (singlet) spin states. The triplet configuration is char-

acterized by an antisymmetric spatial wavefunction, which has an anti-node between relative

excitons leading to a repulsive interaction. In contrast, the singlet has a symmetric spatial

wavefunction that increases the electron density between the two excitons. In the singlet

configuration the interaction potential has a local minimum which can bind the two excitons

into a molecular state known as the biexciton. The depth of this local minimum is large in

GaAs quantum wells giving a biexciton binding energy of ∼ 1.5 meV, an appreciable fraction

of the exciton binding energy ∼ 9 meV. This biexciton represents a four-particle correlated

state because it involves two holes and two electrons.

To optically excite these singlet or triplet configurations requires consideration of the

optical polarization. Optical excitation with a single circular polarization can only lead

to the formation of the triplet state for which the dominant exciton-exciton interaction is

repulsive. Biexcitons form when semiconductors are excited with both left and right optical
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polarizations because then singlet states can form.

A more complete picture of the biexciton must take into account all electron-hole spin

configurations. For excitation that excites heavy-hole excitons, the electron-hole “soup” after

both left and right optical excitation contains both Jz = ±3
2

holes and Jz = ±1
2

electrons.

This soup has the ingredients for optically inactive “dark” (due to ∆J = 1 transition rules)

excitons which play a critical role in the biexciton formation [242].

Understanding the role of these interactions and their effect on the optical response is

difficult to disentangle. In order to achieve an appreciable degree of exciton-exciton scattering

it is tempting to increase the exciton density. However larger excitation density makes the

residual Coulomb and phase space filling effects more important and can lead to a transition

from excitons to an electron-hole continuum. Studies of exciton-exciton interactions are

therefore best done in a perturbative regime at the lowest power possible.

7.1.2 Exciton-Polaritons

In the previous discussion exciton-exciton interactions were reviewed with the intent

to explain the rich many-body physics that arises from them. This section is concerned with

discussing how these interactions manifest for exciton-polaritons. For cocircularly polarized

excitation these theories expect a repulsive polariton-polariton interaction [12]. For cross-

polarized excitation there is no consensus as to how the interactions manifest. Can the

biexciton strongly couple to the electromagnetic field [191] creating a biexciton-polariton

[237]? Is the biexciton in the weak coupling regime even when the exciton is strongly

coupled[177, 238, 239]? Do the polaritons interact to form bipolaritons? Recently, it has

been suggested that the cross-polarized polaritons can scatter against an inaccessible bound

biexciton state leading to a Feshbach resonance [191].

The manifestations of polariton interactions are not well understood. It is only recently,

twenty-five years after the first polariton samples, that it became apparent that lower and

upper polaritons interact with each other [188, 240]. Most experiments and theories have
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focused on the lower polariton, where for cocircularly polarized interactions there is typically

a blue shift due to repulsive polariton-polariton interactions. However, both the cross-

polarized interactions and the interactions between upper and lower polaritons are poorly

understood. The goal of our experiments is to understand and quantitatively measure these

interactions.

7.2 Cross Polarized Excitation of Exciton-Polaritons

In this section, we discuss our measurements attempting to study the cross-polarized

properties of exciton-polaritons. Our measurements are the same as Fig. 6.3 except we

use the exciton-cavity detuning to vary the polariton-polariton interactions. We attempt

to access the bipolariton (or biexciton) using different cross polarized light pulses. The

polarization sequence of most interest is σ−σ+σ+σ− (Fig. 7.1a) because in a third order

regime this pulse sequence does not have a quantum pathway that provides a population.

Note we are not strictly in a third-order regime, as we were attempting to access the higher

excitation density regime of the reported Feschbach resonance [191]. However we estimate

our excitation density is ∼ 1.2 · 1010 cm-2 about fives times lower than their recorded result.

We use MDCS to isolate the different interactions (Table 7.1). The different coherences

induced by the four pulses are illustrated in Fig. 7.1b. In exciton-polaritons there is a

two-mode degeneracy in polarization, however our pulse sequence spectrally separates the

different cross-circular interactions. In a model in which there is no biexciton, we expect

there should be four peaks corresponding to the higher-order coherences of the doubly excited

states. During time T these doubly excited states will have contributions only from cross-

circular interactions Table(7.1). After the third pulse each singly-excited state |LP (UP )〉±

contributes to two coherences (Fig. 7.1b).(Note: The doubly excited states in this basis are

separable product states). For non-zero interaction energies, and no bipolaritons, we expect

to see the spectrum of Fig. 7.1c with peaks corresponding to the color-coded Feynman

diagrams of Fig. 7.1d.
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Table 7.1: Interactions ∆ Probed by σ−σ+σ+σ− Polarized Pulses.

ρij Cross-Circular Interactions

|UP 〉−|UP 〉++〈g| ∆UP−,UP+

|LP 〉−|LP 〉++〈g| ∆LP−,LP+

|UP 〉−|LP 〉++〈g| ∆UP−,LP+

|LP 〉−|UP 〉++〈g| ∆LP−,UP+

In this pulse sequence the interactions probed during time T are the cross-polarized

interactions. These will give rise to four distinct peaks in the multi-quantum spectrum. It

is possible to identify four distinct interactions.

Most studies of biexciton dynamics in exciton-polaritons have focused on the lower

polariton branch. This is because, in a two-mode or mean field picture of polaritons it is

difficult to imagine a situation where the upper polariton can contribute biexcitonic effects.

The upper polariton is always higher energy than the exciton and thus can not approach the

biexciton energy as a function of exciton-cavity detuning. In contrast the lower polariton can

be tuned to near-resonance with the expected biexciton binding energies. Here we show that

the mixed mode of an upper and lower polariton can intersect with the expected biexciton

energy. This pulse sequence accesses the doubly excited manifold where the biexciton can be

directly observed [42]. If the cross-mode interactions ∆LP−,UP+,∆UP−,LP+ are non-zero then

these states can be tuned into resonance with the biexciton. We measure both the higher

order (Fig. 7.2a) and first order dispersion of the cross-polarized polaritons in Fig. 7.2b.

In our measurements only cross-polarized doubly excited polaritons, and no biexcitons, are

observed in direct contrast to previous claims [237–239]. Because we do not see a biexcitonic

resonance we plot both the expected doubly excited exciton energy (black line) and the

biexciton energy (1.5meV binding energy) (green line) in Fig. 7.2a. The biexciton energy
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never overlaps with the doubly excited upper polaritons, however it does intersect both the

mixed mode of upper and lower polariton (middle dispersion) and the doubly excited lower

polaritons. In our measurements, the biexciton intersects the mixed-state dispersion near the

doubly avoided crossing. At the doubly avoided crossing we expect biexcitonic interactions,

leading to bound states, to be a smaller effect because the polariton wave functions are

an equal superposition of cavity-exciton. At larger detuning δ ∼ 5meV the doubly excited

lower polariton intersects the biexciton energy. At these detunings the lower-polariton has

an increasing excitonic fraction making biexcitonic effects more likely.
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Figure 7.1: a.) Excitation pulse sequence for exciton-polaritons excited by σ−σ+σ+σ− po-

larized pulses. b.) Effective energy diagram showing the coherences during times τ (light

blue), T (light green) and t (yellow). c.) Expected two-quantum MDCS spectrum in the

presence of cross-polarized many-body interactions. The peaks are color coded according to

their quantum pathways. d.) The Feynman diagrams for this polarization including only the

first three pulses. The final σ+ pulse reads out the states effectively multiplying the number

of diagrams by a factor of two. The rephasing diagrams lack a population term. Each peak

in a MDCS spectrum corresponds to two diagrams.
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Figure 7.2: Measured dispersion curves for polaritons excited by cross-polarized light. a.)
Frequency integrated two-quantum spectra as a function of exciton-cavity detuning. The
dispersion curves reveal no biexciton which would have a flat dispersion curve (green line).
Plotted for references is the doubly excited exciton dispersion (black line). At large detun-
ing the lower-polariton wavefunction asymptotes to the doubly excited exciton. b.) The
frequency integrated one-quantum spectra plotted as a function of exciton-cavity detuning.

In the work of Takemura et al. [191] an exciton-polariton Feshbach resonance was

reported when the lower polariton mode intersected the biexciton energy. A Feshbach reso-

nance describes the scattering of a continuum off of an inaccessible bound state [243]. This

phenomena is characterized by a scattering length and a collisional loss (Fig. 7.3). In the

context of semiconductor physics the scattering length is related to the self-resonant energy

shifts (EIS) and the collisional loss is related to the scattering-induced dephasing (EID).

Takemura proposed the scattering of an oppositely polarized continuum of two-lower polari-

tons scattering off of the bound biexciton state. The evidence for this was the dispersive

energy shift as a function of exciton-cavity detuning of the lower-polariton branch.

Using MDCS, we observe a similar change in the self-resonant energy as a function
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Figure 7.3: a.) Scattering potentials for the continuum and bound channels. The bound
channel is inaccessible to the continuum but when the continuum comes into resonance with
a state in the bound channel the polaritons exhibit enhanced scattering. b.) Characteristic
scattering of a Feshbach resonance as a function of detuning. The scattering length between
two states becomes very large (a) as the continuum is tuned onto resonance with the bound
state providing a dispersive shape. The collisional loss (b) exhibits a resonant character.
Figures adapted from [243].

of exciton-cavity detuning. We plot the real part of the MDCS spectra as a function of

detuning in Fig. 7.4. Near the biexciton resonance, the doubly excited states |LP 〉−|LP 〉+〈0|

and |LP 〉−|UP 〉+〈0| experience a dramatic change in their phase. This phase change is

indicated in the real part of an MDCS spectrum by a transition from dispersive with positive

EIS, to emissive indicating excitation induced narrowing and then to dispersive indicating

negative EIS. This dramatic shift in the real part essentially confirms the measured result of

[191]. However the |LP 〉−|UP 〉+〈0| state indicates that the right polarized upper polariton

plays a critical role in the scattering process. It is possible that there are two Feshbach

resonances, a closed channel for both the doubly excited lower polaritons and for the mixed

states. However, the |UP 〉−|LP 〉+〈0| state does not exhibit the same dispersive change in its

interaction energy. This fact suggests that the observed dispersive change in the interaction

energy is the result of a three state scattering process between the |LP 〉−,|LP 〉+, and |UP 〉+

states. We are currently theoretically investigating this phenomenon.

Note that in further studies of we observe similar physics in resphasing data with

σ−σ+σ−σ+ polarization (not shown). However we do not observe this behavior for σ−σ−σ+σ+
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polarization. To make this change in interaction energy clear we plot diagonal slices (Fig 7.5)

of the left-two peaks in the MDCS spectra of Fig. 7.4. A clear transition of the lineshape

from positive interaction energy at lower detuning (red curves) to negative interaction energy

at larger detuning (blue curves) is observed. In between the MDCS spectra becomes emis-

sive indicating that instead of excitation induced dephasing there is an excitation induced

narrowing.
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Figure 7.4: Real Part of MDCS spectra as a function of exciton-cavity detuning δ measured

for σ−σ+σ+σ− polarized excitation pulses. The states |LP 〉−|LP 〉+〈0| and |LP 〉−|UP 〉+〈0|

experience a phase roll when near-resonance with the biexciton.
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Figure 7.5: Diagonal slices of MDCS spectra as a function of increasing detuning. Red
curves correspond to smaller detuning and positive interaction energy, (black) curves for an
emissive lineshape and (blue) curves for negative interaction energy. The left panel shows
slices of |LP 〉−|LP 〉+〈0| and the right panel shows slices of |LP 〉−|UP 〉+〈0|.

Our measurements indicate a new type of polariton scattering exists for cross-polarized

polaritons due to the biexciton resonance. In particular we expect that the |LP 〉− state is

involved in three-state collisions with both the |LP 〉+ and |UP 〉+ states at the biexciton

resonance. This mapping is unavailable to the other mixed mode peak in the MDCS spectrum

for unknown reasons for which we are trying to understand.

7.3 The Co-Circular Interaction in Exciton-Polaritons

In the previous section we considered the role of the biexciton in polariton-polariton

scattering. In this section we consider a simpler subset of polariton-polariton scattering due

to co-circular interactions. In these experiments we excited the polaritons with only σ− po-

larization using the multi-quantum coherences as a direct probe of these interaction energies.

Our analysis is motivated by a desire to quantify these interactions as they are responsible

for effects such as superfluidity and play a role in Bose-Einstein condensation. Despite their

importance, the exact role of these interactions is poorly understood and controversial in no

small part because they are poorly measured [184, 244].
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Quantitatively, measuring interaction energies in semiconductors is a convoluted prob-

lem, the transition dipole moments change with excitation density due to Pauli screening,

there can be self-resonant interactions and inter-resonant interactions. It has been argued

that Pauli exclusion between the excitons fermionic components is the most important in-

teraction for excitons, so that Coulomb mediated many-body interactions only provide cor-

rections [244–248]. Additionally, for exciton-polaritons there is a photon-assisted exchange

interaction independent of the Coulomb interaction [244]. Unfortunately, experiment cannot

distinguish between these mechanisms directly.

Pump-probe techniques project inter- and intra-resonant interactions onto the same

peak where they become inseparable. For this reason MDCS is a preferred technique be-

cause it can in principle isolate the inter- and intra-mode interactions. In a few-level model,

that effectively truncates the excitation ladder, it is often a reasonable approximation that

the dipole moments of the different transitions are the same. In this case the many-body in-

teractions can be read out from the real part of the MDCS spectrum. This picture essentially

neglects the phase-space filling of the ensemble, providing only the phase space filling of the

two-levels. The phase-space filling of the ensemble manifests as a reduced dipole moment

between different excitation manifolds and can be included in truncated models (Ch.4). The

problem with this assumption is, that if it is wrong, the interfering quantum pathways in an

MDCS spectrum have both different phases (due to many-body interactions) and different

amplitudes due to the changing dipole moment. At this point, a fit to a measurement will

be hopeless for extracting physical many-body parameters. The problem of fitting many

resonances that are nearly degenerate with each other is famously poorly behaved [249, 250]

and the inclusion of these resonances having different amplitudes is then nearly hopeless. A

separate issue in MDCS spectroscopy is the error-bars that are typically reported. Often

an experiment is done, the data without errorbars is fitted and then this process is re-

peated. Reported error-bars are then given as the deviation in the unweighted fitted results

[68, 69, 231, 251]. Such a fit is unreliable as it does not find the most likely model parameter,
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which requires a weighted fit, (although with very high signal-to-noise it might be close) and

it is improbable that the error estimate is correct. Analysis should rather involve weighted

fits of experimental data where a single best-fit is recorded and error-bars are provided by

the quality of the fit (for instance the probability density of the fit parameters).

To address these issues, we have spent some time developing both a simplified lineshape

to fit in order to extract many-body interactions and in removing the effect of phase-space

filling from the fits by using additional measurements. While still in development, we discuss

our progress towards these goals using the weighted fit approach to quantify polariton-

polariton interaction energies using MDCS spectroscopy.

7.3.1 The Problem of Extracting Many-Body Parameters

The problem of extracting many-body parameters is that one must deal with the

limitations of fitting analysis and with the limitations of the experiment. The problem

of fitting a sum of decaying exponentials is famously difficult [249, 250]. The situation where

data is fit to a function of the form

y = aeαt + beβt (7.1)

and all four parameters must be inferred usually leads to an extremely ill conditioned fit,

with many combinations of these parameters that will fit a given curve. This is the exact

form of the functions from a Feynman pathway analysis except that the constants α and β

are complex, with two parameters each describing the resonant frequency and the dephasing.

In the case of a simple two-level system the functional form can be reduced since α = β and

a = b in the Feynman diagrams. With the addition of many-body interactions in a few-level

scheme the fits become much more difficult and there is a need to reduce the complexity of

the fit.

Here we discuss a few-level diagram such as a diamond structure mapped into an
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effective three-level energy structure. In this scheme, we are implicitly working in a truncated

collective model that can correctly calculate the polarization response as discussed in Ch.4.

In a collective scheme the dipole between manifolds changes by
√
N − n to reflect the role

of phase-space filling. For a three-level system, there are three Feynman diagrams for a

rephasing pulse sequence corresponding to a positive S+ and negative S− amplitude quantum

pathways. Given a dipole moment, µ0, the sum of these signal pathways results in

S = S+ + S− = µ4
0N [2− (N − 1)eiφint ]e−iωτ τ+iωtt−γτ τ−γttE∗EE∗E. (7.2)

Here N is the number of electrons participating in the radiative dipole transition, ωtau and

ωt are the radiative frequencies during time periods t and τ , and φint = ∆intt represents the

complex time-dependent phase associated with many-body interactions and is typically of

the form φint = i(EIS + iEID)t. Since EIS(EID) are self-resonant interactions and self-

resonant dephasing we use them explicitly as a frequency and an additional linewidth. As

the sum of the Feynman diagrams it is S that should be fit to. In the limit of large N it

might be possible to reduce this function by factoring out N from the brackets and ignoring

the 1
N

terms. However this only reduces the complexity of the amplitude. This equation is

still problematic from a fitting perspective as during time t there are two nearly identical

frequencies (split by the interaction energy) and two dephasing rates (split by the interaction

mediated dephasing).

To reduce the number and complexity of approximations it is better to use a differ-

ent pulse sequence that is more sensitive to many-body interactions, for example the two-

quantum coherence. One advantage of this pulse sequence is that all two-quantum coherence

pathways have the same phase-space filling factor. The sum of the signal pathways results

in

S = S+ + S− = µ4
0N(N − 1)[1− eiφint ]e−iωTT+iωtt−γTT−γttE∗EE∗E. (7.3)
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In contrast to the rephasing pulse sequence, the amplitude has only a single phase-space

filling term N(N − 1) and the amplitude goes to zero for φint = 0. This is still a poorly

conditioned fit since it is still looking for small frequency and linewidth shifts in the ωt

direction but the amplitude requires no simplifications. Following the conventions of [252]

and taking a Fourier transform of this function results in the fitting model

S(ω) =
−2 · µ4

16~4
(P (ωt,int)− P (ωt,0)) · P (ωT,int)e

iΩτ τeiΩt∗ t
∗
E∗EE∗E. (7.4)

Here Ωij = ωij− iγij is the complex resonance frequency between transitions i, j and P (ω) =

i
ω−Ωij

. The subscript int indicates whether the frequency Ωij should include many-body

interactions during time t. This fitting model can be simplified if we define the variables

A = ω − (ωt + i · γt) and B = EIS + iEID. The functional form of Eq. 7.4 is

S(ω) =
−2µ4

0

16~4
· i( −B

(1 + B
A

) · A2
) · P (ωT,int)e

iΩτ τeiΩt∗ t
∗
E∗EE∗E. (7.5)

In the limit that the many-body interactions are perturbative B
A
� 1 this equation reduces

to

S(ω) =
−2N(N − 1)(iEIS − EID) · µ4

16~4
P (ωt,0)2 · P (ωT )eIΩτ τeIΩt∗ t

∗
E∗EE∗E. (7.6)

The functional form of this equation is much simpler to fit to because there is only a single

set of frequencies and linewidths to extract. Rather it is the overall phase and ampli-

tude that determines the value of the many-body interactions. However, at this level the

model is still not able to extract the many-body interactions. The fit will return one power-

dependent complex amplitude. By recording MDCS spectra at a specific power and fitting

it to Eq. 7.6 the amplitude product −2N(N−1)(iEIS−EID)·µ4
16~4 E∗EE∗E can be extracted. This

can be further reduced by taking data as a function of excitation power and fitting it to find

−2N(N−1)(iEIS−EID)·µ4
16~4 . At this level an additional measurement must be made to remove the
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phase-space filling µ4
0N(N − 1) contribution to the amplitude. The separate measurement

consists of linear absorption spectra recorded as a function of power.

The linear spectra at a given power will have a model lineshape (including higher order

corrections)

Slinear(ω) = 2(
Nµ2

0

4~2
P (ω)E∗E − N(N − 1)µ4

0

16~4
P (ω)E∗EE∗E. (7.7)

By fitting this expression to data recorded as a function of power, the amplitude product

µ2

4~2NE
∗E can be extracted and fit to a power dependence to find β2 = ( µ

2

4~2 )N .

The final step in the procedure is to divide −2N(N−1)(iEIS−EID)·µ4
16~4 by β4 providing the

result

Amplitude

β4
= −1(1− 1

N
)(iEIS − EID) =

Areal + i · Aimag
β4

(7.8)

where Areal,imag is the real and imaginary component of the extracted data. The procedure

calls for four fitting steps before the many-body interactions can be extracted reliably. This

procedure requires that a great deal of care be taken in propagating the errors and ensuring

that high-quality fits are achieved.

In a simple exciton-cavity coupling picture the polaritons are expected to be homo-

geneously broadened. However, upper polaritons are known to exhibit long energy tails on

the high energy side due to interaction of the light with continuum states and interbranch

scattering [253, 254]. Both the upper and lower polariton are expected to have subaverage

broadening with their linewidth below that of a Voigt profile [254]. However, what has not

yet been discussed but is clearly seen in these papers is that the lower polariton clearly also

has an asymmetric low energy tail [254]. To capture these asymmetries and provide a better

fit and estimate of the amplitude of the linear absorption spectra we introduce an asymme-

try parameter α following the method of [255]. They proposed using a frequency dependent

linewidth that can vary across the Lorentzian to capture asymmetries. The functional form
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of the proposed linewidth has an asymmetry parameter α that on resonance becomes the

usual homogeneous linewidth of a Lorentzian. This linewidth can get larger/smaller in the

wings of the Lorentzian.

γ(ω) =
2γ0

1 + eα(ω−ω0)
(7.9)

When using this functional form our reduced χ improved by about ∼ 10 for both the upper

and lower polariton fits. The fits using the asymmetry parameter showed a clear blueshift of

the upper and lower polariton energies with increasing power; this effect was not observable

with the simple Lorentzians.

7.3.2 Preliminary Fitting Results

In this section we discuss our preliminary fitting results. The fit parameters of the

absorption at different power are shown for lower polaritons in Fig. 7.7 and for upper

polaritons in Fig. 7.8. Both peaks show a nonlinear scaling with excitation power as expected

since the data is recorded over three orders of excitation power and our model is designed

to fit this including higher order corrections (Top Left Panels). At lower excitation power

the lower polariton linewidth (Fig. 7.7) is constant before increasing at higher excitation

density. As the excitation power increases the lower polariton blueshifts. The upper polariton

linewidth (Fig. 7.7) top right appears constant before decreasing. We attribute this to a

fit that is insensitive to the linewidth rather than a physical result (possibly due to low

signal-noise). The upper polariton center frequency clearly blue shifts to higher energy as

the excitation power increases.

In order to find the errors on these fits we make use of a Markov Chain Monte-Carlo

Ensemble Sampler (The MCMC Hammer) [256] to sample the posterior probability distri-

bution of the fit. The posterior probability distribution provides a statistical estimate of the

quality of the fit and the confidence interval of the fitted parameters; details can be found in
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Figure 7.6: a.) Effective energy level diagram for exciton-polaritons probed by cocircular
light. Shown are the upper and lower polaritons as well as their doubly excited states includ-
ing a mixed M2P state. b.) Feynman diagrams showing the different quantum pathways
accessible in a two-quantum coherence. (Top) Four pulses used to excite the sample. Shown
here are Feynman diagrams for two-quantum coherences with only the first three pulses
represented. The final pulse converts the coherent state into a population state effectively
multiplying the number of diagrams by two. The measurement is insensitive to the readout
state, only the states that evolve during time τ , T and t. Not shown are the pathways that
access the U2P state, these are indicated by the x2 in the diagram because they are identical
to the pathways that excite the L2P state.

[250]. The projections of this distribution for both upper and lower polaritons are plotted in

(Appendix D) with the mean fit value and the one sigma values indicated in the integrated

fit projections by dashed lines.

Using the fitting errors from this process we fit the amplitudes of the upper and lower
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polariton absorption peaks (Fig. 7.9) to find the parameter Nβ2. For the lower polariton

we find Nβ2
LP = .205 ± .005 and for the upper polariton we find Nβ2

UP = .406 ± .012. The

residual variance of these fits was ∼ 2 providing a high quality measurement of this dipole

factor.

For nonlinear MDCS measurements data was recorded as a function of excitation den-

sity and exciton-cavity detuning. These measurements explored the effective energy diagram

and the quantum pathways of (Fig. 7.6). The data to the fits of these curves are not in-

cluded here due to their poor preliminary quality. An issue with the measurement is that

the blue-shift of the peaks is observable even for relatively low excitation powers. This com-

plicates our analysis where we assume the resonant frequency remains essentially constant

and resonant interaction energies provide a change in the phase of the MDCS spectrum. We

hope to resolve these issues in the near future.

7.3.3 Conclusion

We have performed measurements on polaritons excited by both co circular and cross

circular excitation. Our results confirm the phase roll reported as a Feshbach resonance, but

indicate that there is an asymmetric scattering channel that involves an upper polariton. We

do not observe a biexciton, or a bipolariton. For our cocircular results we have performed

extensive measurements and the data is collected. Concurrently, we developed an analysis

method capable of measuring many-body interactions quantitatively. This method allows

for a quantitative measurement of the many-body interactions as predicted by few-level

models of the exciton-polariton nonlinear optical response. We have successfully measured

the phase space filling factor Nβ2 within the context of our experiment and we hope to

use this parameter to quantitatively measure the self-resonant interaction energies EIS and

EID accurately. Our analysis is ongoing.
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Figure 7.7: Fitting curves for two-pulse absorption data. Fitted results for the lower-
polariton with the fitted parameters found as function of power. The amplitude (top left
panel) clearly scales nonlinearly with increasing excitation power. The linewidth varies across
the excitation power range but the peak is clearly blue-shifting to higher energy as the exci-
tation density increases (top right panel). The asymmetry parameter is found to be ∼ −1.2
meV−1 (bottom left panel). The lower right panel shows the reduced χ for each fit at each
power.
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Figure 7.8: Fitting curves for two-pulse absorption data. Fitted results for the upper-
polariton with the fitted parameters found as function of power. The amplitude (top left
panel) clearly scales nonlinearly with increasing excitation power. The linewidth varies
across the excitation power range but the peak is clearly blue-shifting to higher energy as
the excitation density increases (top right panel). The asymmetry parameter is found to be
∼ 1.5 meV−1 (bottom left panel). The lower right panel shows the reduced χ for each fit at
each power.
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Figure 7.9: Fitted curves to the amplitude of the Upper and Lower polaritons on a log-log
scale. Amplitude error-bars are included in both plots. a.) The lower-polariton fit to extract
the parameter Nβ2 for which we find a value of Nβ2 = .2048. The amplitude of this plot
is in number of electrons ne. b.) The upper-polariton fit to extract the parameter Nβ2 for
which we find a value of Nβ2 = .4061.



Chapter 8

Conclusion

In this thesis I have explored some of the work that I have led the progress on. My

work with Gaël Nardin on developing a new method to perform MDCS spectroscopy was

extensively discussed. Our technique relies on dynamic phase cycling to select a nonlinear

process of interest. Because our dynamic phase cycling results in a signal at a particular

radio frequency; we are able to use an external reference laser to monitor interferometer

fluctuations and correct them in a demodulated signal. The use of the external reference

laser puts our measurement into a rotating frame allowing the system to physically under

sample the optical frequencies. An innovation of our approach is that our signal is collected

as a photocurrent. This approach make MDCS appropriate for exploring device coupled

nanophotonic systems.

The process of collective wave mixing in an effective model for quantum well excitons

was developed based on a statistical approach. This model reduced to a Dicke model when

considering excitons at Kx = 0. This model demonstrates that a system with a large

number of energy levels can have a perturbative polarization response while some of it’s

density matrix elements remain in a non-perturbative regime. In this model we explored the

role of level truncation and how this model relates to few-level models that are currently

ubiquitous. We then considered the role of many-body interactions (specifically a two-body

interaction) and discussed how it would modify the total polarization of the ensemble. This

model provides a link between the fermionic models of excitons and the bosonic models of
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excitons.

We reviewed strong coupling and cavity quantum electrodynamics for both single-two

level systems and collective ensembles. This provided motivation for our measurements of

the higher order dispersion curves of exciton-polaritons. The excitation ladder for collective

ensembles, and exciton-polaritons in particular, measured by higher order avoided crossings

had not been explored. Our work attempted to address this issue and provide information

about the exciton-polariton ladder of states. While not able to deterministically access

particular states, a wealth of new information is revealed from our measurements. First our

measurements reveal that at low excitation density the exciton-polariton eigenstates match

that of two coupled quantum harmonic oscillators. Secondly, our measurements indicate that

the many-body interactions are perturbative to the optical response of the exciton-polaritons.

Thirdly, there appears to be a series of cavity-exciton NooN states in the excitation ladder

of exciton-polaritons. While we were not able to deterministically access these states they

may be of interest to future quantum devices.

We have reviewed our progress to date on measuring the exciton-polariton interaction

constants. For cross-circular excitation our results confirm the phase roll that was reported

as a Feshbach resonance. However, the asymmetry in the mixed state polaritons indicates

that this scattering is more complicated and involves the upper polariton. The co-circular

excitation measurements are incomplete. We have recorded the required data however our

fits are preliminary. Our analysis was developed to reduce the complexity of the fitting

algorithms.

8.1 Outlook

The ongoing projects from this work include:

• The use of an field programmable gate array (FPGA) as opposed to a digital signal

processor to mix our reference signals for the demodulated nonlinear signal. The



154

use of a higher speed will allow the experiment to move to MHz beat notes. In this

regime the noise of our detection electronics should improve as well as the phase

noise associated with long term interferometer drift.

• Not discussed in this thesis, but a project I started, was to use a nano-probe to

perform single molecule MDCS. I demonstrated the first FWM off of a grating-

etched into an atomic force microscope. While we were not able to time resolve the

dynamics (due to our pulse duration) this measurement provided crucial proof of

principle for Chris Smallwood and others to follow. He is currently in the process of

expanding upon the setup and attempting to reduce the required measurement time

as this becomes a four-dimensional scan in order to perform MDCS in a nanoprobe

configuration with spatial resolution.

• The collective wave mixing of excitons is an interesting topic that has not been

extensively explored through a Dicke model. The role of the biexciton and dark

exciton (by selection rules) states needs to be considered in this model. It may be

possible to consider the subradiant states in the Dicke model as a treatment of the

dark excitons. It is also unclear how to incorporate exciton-exciton scattering that

moves excitons out of the light cone.

• The strong-coupling regime of exciton-polaritons remains a rich area to be explored.

In particular, devising a scheme to deterministically access the polaritonic noon

states, that our results indicate exists, is of significant interest. There is also signif-

icant interest in characterizing the higher order dispersion in photonic quantum dot

cavities where the light is confined in three dimensions.

• Our measurements of the reported Feshbach resonance need to be explored theoret-

ically. While we are able to confirm the reported phase change (as evidenced by the

real part of the MDCS spectra) we do not understand the asymmetry in the mixed
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exciton-polariton states. We are collaborating with Shaul Mukamel (UC Davis) to

develop a theoretical understanding of this phenomena.

• Our measurement of the co-circular interaction energy are a work in progress. We

have been successful in reducing the complexity of our model but so far the results

have been inconclusive. We expect that further fine-tuning of the model parameters

will help us record high-quality fits. An issue with the measurement is that the

blue-shift of the peaks is observable even for relatively low excitation powers. This

complicates our analysis where we assume the resonant frequency remains essentially

constant and resonant interaction energies provide a change in the phase of the

MDCS spectrum. We hope to resolve these issues in the near future.



Bibliography

[1] R. J. Elliott, “Intensity of Optical Absorption by Excitons,” Physical Review, vol. 108,
pp. 1384–1389, Dec. 1957.

[2] N. W. Ashcroft and N. D. Mermin, Solid State Physics. New York: Rinehart and
Winston, 1976.

[3] J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures. Cam-
bridge University Press, 2003.

[4] S. T. Cundiff, “Optical two-dimensional Fourier transform spectroscopy of semicon-
ductor nanostructures [Invited],” Journal of the Optical Society of America B, vol. 29,
p. A69, Feb. 2012.

[5] C. Kittel, Introduction to Solid State Physics. Wiley, Nov. 2004. Google-Books-ID:
kym4QgAACAAJ.

[6] E. Hanamura and H. Haug, “Condensation effects of excitons,” Physics Reports,
vol. 33, pp. 209–284, Oct. 1977.

[7] G. H. Wannier, “The Structure of Electronic Excitation Levels in Insulating Crystals,”
Physical Review, vol. 52, pp. 191–197, Aug. 1937.

[8] T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, “Giant Rydberg
excitons in the copper oxide Cu2o,” Nature, vol. 514, pp. 343–347, Oct. 2014.

[9] S. B. Nam, D. C. Reynolds, C. W. Litton, R. J. Almassy, T. C. Collins, and C. M.
Wolfe, “Free-exciton energy spectrum in GaAs,” Physical Review B, vol. 13, pp. 761–
767, Jan. 1976.

[10] T. Zang, Optical Two-Dimensional Fourier Transform Spectroscopy of Semiconductors,
vol. PhD thesis. Boulder, Co: University of Colorado Boulder, 2008.

[11] J. J. Hopfield, “Theory of the Contribution of Excitons to the Complex Dielectric
Constant of Crystals,” Physical Review, vol. 112, pp. 1555–1567, Dec. 1958.

[12] C. Ciuti, P. Schwendimann, B. Deveaud, and A. Quattropani, “Theory of the angle-
resonant polariton amplifier,” Physical Review B, vol. 62, pp. R4825–R4828, Aug.
2000.



157

[13] G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics
of normal-mode-coupling semiconductor microcavities,” Reviews of Modern Physics,
vol. 71, pp. 1591–1639, Oct. 1999.

[14] H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensa-
tion,” Reviews of Modern Physics, vol. 82, pp. 1489–1537, May 2010.

[15] J.-Y. Marzin, M. N. Charasse, and B. Sermage, “Optical investigation of a new type
of valence-band configuration in InxGa1xAs-GaAs strained superlattices,” Physical
Review B, vol. 31, pp. 8298–8301, June 1985.

[16] M. Moran, P. Dawson, and K. J. Moore, “The nature of the light hole potential
profile in GaAsInGaAs double quantum well structures,” Solid State Communications,
vol. 107, pp. 119–123, May 1998.

[17] L. C. Andreani and A. Pasquarello, “Accurate theory of excitons in GaAs-Ga1-xAlx
quantum wells,” Physical Review B, vol. 42, pp. 8928–8938, Nov. 1990.

[18] G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi
splitting in semiconductors,” Nature Physics, vol. 2, pp. 81–90, Feb. 2006.

[19] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled
exciton-photon mode splitting in a semiconductor quantum microcavity,” Physical
Review Letters, vol. 69, pp. 3314–3317, Dec. 1992.
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U. Oesterle, and R. Houdré, “Strongly Driven Semiconductor Microcavities: From the
Polariton Doublet to an ac Stark Triplet,” Physical Review Letters, vol. 80, pp. 4733–
4736, May 1998.

[29] J. M. Shacklette and S. T. Cundiff, “Role of excitation-induced shift in the coherent
optical response of semiconductors,” Physical Review B, vol. 66, p. 045309, July 2002.

[30] K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O.
Smith, R. Eccleston, J. Kuhl, and K. Ploog, “Influence of exciton-exciton interactions
on the coherent optical response in GaAs quantum wells,” Physical Review B, vol. 48,
pp. 17418–17426, Dec. 1993.

[31] H. Wang, K. B. Ferrio, D. G. Steel, P. R. Berman, Y. Z. Hu, R. Binder, and S. W. Koch,
“Transient four-wave-mixing line shapes: Effects of excitation-induced dephasing,”
Physical Review A, vol. 49, pp. R1551–R1554, Mar. 1994.

[32] W. P. Aue, E. Bartholdi, and R. R. Ernst, “Twodimensional spectroscopy. Application
to nuclear magnetic resonance,” The Journal of Chemical Physics, vol. 64, pp. 2229–
2246, Mar. 1976.

[33] G. Bodenhausen, R. Freeman, G. A. Morris, and D. L. Turner, “NMR spectra of some
simple spin systems studied by two-dimensional fourier transformation of spin echoes,”
Journal of Magnetic Resonance (1969), vol. 31, pp. 75–95, July 1978.

[34] B. Vogelsanger and A. Bauder, “Twodimensional microwave Fourier transform spec-
troscopy,” The Journal of Chemical Physics, vol. 92, pp. 4101–4114, Apr. 1990.

[35] I. Noda, “Two-dimensional infrared spectroscopy,” Journal of the American Chemical
Society, vol. 111, pp. 8116–8118, Oct. 1989.

[36] D. Suter, H. Klepel, and J. Mlynek, “Time-resolved two-dimensional spectroscopy
of optically driven atomic sublevel coherences,” Physical Review Letters, vol. 67,
pp. 2001–2004, Oct. 1991.



159

[37] P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the Amide I Band of Peptides
Measured by Femtosecond Nonlinear-Infrared Spectroscopy,” The Journal of Physical
Chemistry B, vol. 102, pp. 6123–6138, July 1998.
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[39] N. Demirdöven, M. Khalil, and A. Tokmakoff, “Correlated Vibrational Dynamics Re-
vealed by Two-Dimensional Infrared Spectroscopy,” Physical Review Letters, vol. 89,
p. 237401, Nov. 2002.

[40] J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-
dimensional electronic spectroscopy,” Chemical Physics Letters, vol. 297, pp. 307–313,
Nov. 1998.

[41] X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-Body Interactions in Semi-
conductors Probed by Optical Two-Dimensional Fourier Transform Spectroscopy,”
Physical Review Letters, vol. 96, p. 057406, Feb. 2006.

[42] K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-
Quantum 2d FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells,”
Science, vol. 324, pp. 1169–1173, May 2009.

[43] C. Li, W. Wagner, M. Ciocca, and W. S. Warren, “Multiphoton femtosecond phase-
coherent two-dimensional electronic spectroscopy,” The Journal of Chemical Physics,
vol. 126, pp. 164307–164307–6, Apr. 2007.

[44] W. Langbein and B. Patton, “Heterodyne spectral interferometry for multidimen-
sional nonlinear spectroscopy of individual quantum systems,” Optics Letters, vol. 31,
pp. 1151–1153, Apr. 2006.

[45] F. Albert, K. Sivalertporn, J. Kasprzak, M. Strauß, C. Schneider, S. Höfling, M. Kamp,
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[187] V. Kohnle, Y. Léger, M. Wouters, M. Richard, M. T. Portella-Oberli, and B. Deveaud,
“Four-wave mixing excitations in a dissipative polariton quantum fluid,” Physical
Review B, vol. 86, p. 064508, Aug. 2012.

[188] P. Wen, G. Christmann, J. J. Baumberg, and K. A. Nelson, “Influence of multi-exciton
correlations on nonlinear polariton dynamics in semiconductor microcavities,” New
Journal of Physics, vol. 15, p. 025005, Feb. 2013.

[189] T. Lecomte, D. Taj, A. Lemaitre, J. Bloch, C. Delalande, J. Tignon, and P. Roussignol,
“Polariton-polariton interaction potentials determination by pump-probe degenerate
scattering in a multiple microcavity,” Physical Review B, vol. 89, p. 155308, Apr. 2014.

[190] F. Marchetti and J. Keeling, “Collective Pairing of Resonantly Coupled Microcavity
Polaritons,” Physical Review Letters, vol. 113, p. 216405, Nov. 2014.

[191] N. Takemura, S. Trebaol, M. Wouters, M. T. Portella-Oberli, and B. Deveaud, “Po-
laritonic Feshbach resonance,” Nature Physics, vol. 10, pp. 500–504, July 2014.

[192] Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche, “Observation of Self-
Induced Rabi Oscillations in Two-Level Atoms Excited Inside a Resonant Cavity: The
Ringing Regime of Superradiance,” Physical Review Letters, vol. 51, pp. 1175–1178,
Sept. 1983.

[193] M. G. Raizen, L. A. Orozco, M. Xiao, T. L. Boyd, and H. J. Kimble, “Squeezed-state
generation by the normal modes of a coupled system,” Physical Review Letters, vol. 59,
pp. 198–201, July 1987.

[194] M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael,
“Normal-mode splitting and linewidth averaging for two-state atoms in an optical
cavity,” Physical Review Letters, vol. 63, pp. 240–243, July 1989.

[195] I. Carusotto and C. Ciuti, “Quantum fluids of light,” Rev. Mod. Phys., vol. 85, pp. 299–
366, Feb. 2013.
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Appendix A

Jaynes-Cummings Dynamics

Solving the dynamics of the Jaynes-Cummings model is useful in that it provides an

immediate recognition of the observable quantum phenomena present in such a system such

as single-photon nonlinear optics and field-quantization. To solve these dynamics we make

use of the time-dependent Schrodinger equation:

i~∂t|ψ〉 = H|ψ〉 (A.1)

with the general initial wavefunction

∂

∂t

 ce,n

cg,n+1

 =

−i(ω0 + nωL) −i
√
n+ 1g

−i
√
n+ 1g −i(n+ 1)ωL


 ce,n

cg,n+1

 (A.2)

which can be solved with the ansantz ci = Aie
iλ·t, Ȧ = 0 which removes the sums

 Ȧe,n

Ȧg,n+1

 eiλ·t +

 Ae,n

Ag,n+1

 iλ · eiλ·t =

−i(ω0 + nωL) −i
√
n+ 1g

−i
√
n+ 1g −i(n+ 1)ωL


 Ae,n

Ag,n+1

 eiλ·t

(A.3)

Solving for the values λ using M − I2,2λ = 0 we find

−i(ω0 + nωL)− iλ −i
√
n+ 1g

−i
√
n+ 1g −i(n+ 1)ωL − iλ


 Ae,n

Ag,n+1

 eiλ·t == 0 (A.4)
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λ± = nωL +
1

2
(ω0 + ωL ±

√
4g2(n+ 1) + (ω0 − ωL)2) (A.5)

Solving for the eigenfunctions with A2
g,n+1 + A2

e,n = 1 yields two conditions for Ag,n+1

Ag,n+1,λ− = −ω0 + nωL − λ−
g
√
n+ 1

Ae,n (A.6)

Ag,n+1,λ+ = −ω0 + nωL − λ+

g
√
n+ 1

Ae,n (A.7)

for λ− on resonance Ag,n+1,λ− = −Ae,n while for λ+ on resonance Ag,n+1,λ+ = Ae,n.

This provides two symmetric wavefunctions on resonance

|+〉 =
1

2
[|e, n〉+ |g, n+ 1〉] (A.8)

|−〉 =
1

2
[|e, n〉 − |g, n+ 1〉] (A.9)

(A.10)

re-writing |e, n〉 in the new basis and solving for Pe,n = |〈e, n|e iH·t~ |e, n〉|2 yields

Pe,n = | 1√
2

(〈+|+ 〈−|) 1√
2

(eiλ+t|+〉+ eiλ−t|−〉)|2 (A.11)

Pe,n =
1

4
[2 + 2 cos

(λ+ − λ−)t

2
] = cos2 (g

√
n+ 1) (A.12)

Thus the evolution of any prepared state |e, n〉 oscillates at a rate given by the Rabi

frequency at the level n. For a general state generally written with Eq.

Pe,n =
∞∑
n=0

Cn cos2 (g
√
n+ 1). (A.13)

In general Cn represents the statistical dispersion of photon numbers. For thermal

fields it is exponential, while for coherent fields it is Poissonian [163].



Appendix B

Semi-Classical vs Tavis-Cummings Linear Susceptibility

In this appendix I derive the semi-classical linear susceptibility for both a semi-classical

ensemble of two-level systems (TLS) and for the Tavis-Cummings system. In both cases the

linear susceptibility for both a collective and non-collective ensemble of two-level systems is

found to be the same. Since only a linear susceptibility is required to establish a regime of

strong-coupling the observation of a vacuum Rabi splitting is not sufficient to establish a

regime of quantum coupling. The derivation of macroscopic polarization follows the approach

of Boyd [257]. In general in quantum mechanics a wave-equation must be solved to find the

emitted field. This wave equation depends on the polarization induced by incident light.

The general form of this equation is given by:

∇2E − 1

c2

∂2E

∂t2
=

1

ε0c2

∂2P

∂t2
. (B.1)

The physics of spectroscopy is described by trying to understand the nature of P the

polarization. The polarization for a classical harmonic oscillator excited by a driving laser

at frequency ωL is given by:

P =
N

V ε0~
µ2

01E0e
iωLt

(ω01 − ωL)− iγ01

(B.2)

where N is the number of oscillators and V is the volume of the oscillators. As we

will see the first order polarization of an ensemble of TLS is the same as that of a classical

harmonic oscillator.
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B.0.1 Calculation of the Linear Susceptibility using a Non-Collective En-

semble of TLS

In order to derive this polarization we start with a semi-classical, non-collective ensem-

ble. The density matrix of a TLS can be calculated from Boyd Equation 3.5.1− 3.5.5 and is

given by

ρ(1)
nm = e−(iωnm+γnm)t

∫ t

−∞
dt
′−i
~

[V (t
′
), ρ(0)]nme

(iωnm+γnm)t. (B.3)

Where the interaction Hamiltonian V (t
′
) is given by:

V (t
′
) = −µ · E(t

′
) (B.4)

E(t) = E0e
−iωLt (B.5)

[V (t
′
), ρ(0)]nm = −(ρ(0)

mm − ρ(0)
nn)µnm · E(t) (B.6)

Solving the differential equation we find:

ρ(1)
nm =

(ρ
(0)
mm − ρ(0)

nn)

~
µnmE0e

−iωLt

(ωnm − ωL)− iγnm
(B.7)

< µ >= tr(ρ(1)µ̂ >=
∑
nm

ρ(1)
nmµmn =

∑
nm

(ρ
(0)
mm − ρ(0)

nn)

~
µmnµnmE0e

−iωLt

(ωnm − ωL)− iγnm
(B.8)

This equation can now be averaged over all TLS excited in the same way.

P =
N

V

∑
nm

(ρ
(0)
mm − ρ(0)

nn)

~
µmnµnmE0e

−iωLt

(ωnm − ωL)− iγnm
(B.9)

For a two level system this equation can be reduced so that only two terms exist.
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P ∼ N

V

∑
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00 − ρ(0)

nn)] =

[(ρ
(0)
11 − ρ(0)
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V
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(0)
00 − ρ(0)

11 ) + (ρ
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P =
N

V
[
(ρ

(0)
00 − ρ(0)

11 )

~
µ10µ01E0e

−iωLt

(ω10 − ωL)− iγ10

+
(ρ

(0)
11 − ρ(0)

00 )

~
µ01µ10E0e

−iωLt

(ω01 − ωL)− iγ01

] (B.11)

Let ρ00 = 1 and ρ11 = 0.

P =
N

V
[
ρ

(0)
00

~
µ10µ01E0e

−iωLt

(ω10 − ωL)− iγ10

− ρ
(0)
00

~
µ01µ10E0e

−iωLt

(ω01 − ωL)− iγ01

] (B.12)

and ω10 = −ω01 and γ10 = γ01

P =
N

V
[
ρ

(0)
00

~
µ10µ01E0e

−iωLt

(ω10 − ωL)− iγ10

+
ρ

(0)
00

~
µ01µ10E0e

−iωLt

(ω01 + ωL) + iγ01

] (B.13)

The term on the right is the non resonant term. Thus

P =
N

V
[
ρ

(0)
00

~
µ10µ01E0e

−iωLt

(ω10 − ωL)− iγ10

] (B.14)

B.0.2 Calculation of the Linear Susceptibility using a Collective Dipole

The calculation of the linear susceptibility for a collective ensemble is primarily con-

cerned with making use of the collective dipole moment of the ensemble. Thus we can start

by directly analyzing Eq.(B.8) for the Tavis-Cummings model. Since we know that for the

first dipole transition moment is given by 〈|0|µ|1〉 = −µ0

√
N . We find that
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< µ >= tr(ρ(1)µ̂ >=
∑
nm

ρ(1)
nmµmn =

∑
nm

(ρ
(0)
mm − ρ(0)

nn)

~
µ2

0NE0e
−iωLt

(ωnm − ωL)− iγnm
(B.15)

The polarization is defined as the number of dipoles per unit volume. The above dipole

already represents the number of dipoles. Therefore all that remains is to normalize by the

volume.

P =
< µ >

V
=
tr(ρ(1)µ̂ >

V
=
∑
nm

ρ
(1)
nmµmn
V

=
N

V

∑
nm

(ρ
(0)
mm − ρ(0)

nn)

~
µ2

0E0e
−iωLt

(ωnm − ωL)− iγnm
(B.16)

The equivalence between the first order polarization of classical ensemble of TLS and a

collective ensemble of TLS indicates that linear spectroscopy is unsuitable for distinguishing

between the two. Additionally, since the first order polarization of both systems is equivalent

to the linear polarization of a classical system, the observation of strong-coupling between

a cavity and an optical absorber is not sufficient to establish a quantum statistical regime

[201]. Nonlinear corrections to the polarization will alter the polarization providing infor-

mation about the saturation and optical response of a quantum absorber [13, 18], while a

classical oscillator will exhibit no saturation. Thus only through nonlinear measurements

can information about quantum statistics be learned [20, 21, 45, 163–166, 200, 203, 204].



Appendix C

Understanding the Eigenstates of Exciton-Polaritons Through a Quantum

Beamsplitter

In the limit that the exciton-polariton is unsaturated the eigenstates of the exciton-

polariton can be understood through a close analogy with a quantum beamsplitter. The

beamsplitter Hamiltonian couples two photonic modes at the two input ports of the beam-

splitter. These photonic modes are bosonic providing a direct analogy with the exciton-

polariton system where the exciton is bosonic. The exciton-polariton Hamiltonian of Eq.(6.1)

performs a basis transformation between exciton-cavity and upper-lower polariton in exactly

the same fashion as the quantum beamsplitter. Instead of two photon input ports there is an

upper and lower polariton input port and a photon and exciton output port. The quantum

beamsplitter Hamiltonian at zero-detuning between inputs is [220]:

H = θ(eiφa†1a2 + e−iφa†2a1) (C.1)

Here θ is the coupling constant and φ is a relative phase with a†1,2(a1,2) representing

the input port creation(annihilation) operators. For an optical beamsplitter the reflection

coefficient R = sin2(θ). The formulation of the beamsplitter Hamiltonian allows for a unitary

operator S = eiH to be written which transforms the initial state to it’s final state.

|out〉 = Sa†1|01, 02〉 = Sa†1S
†S|01, 02〉 (C.2)

= cos θ|13, 04〉+ ie−iφ sin θ|03, 14〉 (C.3)
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Where the subscripts indicate the two entrance (1− 2) and output (3− 4) ports. The

relative phase can be set (φ = π
2
) making the wave function identical to that of the UP-LP

state. This clear analogy leads to the middle eigenstate consisting of both UP and LP states

inputs having the form of a NOON state. This leads to the M2P state |ψ〉 = 1√
2
(|2, 0〉−|0, 2〉).

This state has the form.

|out〉 = Sa†1a
†
2|01, 02〉 = Sa†1S

†Sa†2S
†S|01, 02〉 (C.4)

= cos 2θ|13, 14〉+
sin 2θ√

2
(ei(

pi
2

+φ)|03, 24〉+ e−i(
pi
2
−φ)|23, 04〉) (C.5)

The difference is that instead of being composed of two two photons in one or the

other output of the beam splitter the polariton state is composed of either two-excitons or

two-photons. The coupling angle θ of the quantum beamsplitter is then analogous to the

coupling constant g. The other n = 2 states fall directly out of this by inputing in either

two UP or two LP into the quantum beamsplitter. The beamsplitter Hamiltonian provides

a convenient method to calculating the exciton-polariton wavefunctions at low saturation

density. The quantum beamsplitter can support many NOON states and we expect that

these states should naturally exist in exciton-polariton systems. Deterministically accessing

these states is a challenging proposition.



Appendix D

Supplemental Fitting Plots

In this section we include some fitting results from our analysis. In particular the

posterior probability projections from the linear absorption fits are included here. The

variables are as follows w1 is the resonant frequency, gt is the linewidth (half width at

half max),A is the amplitude, sigma is the asymmetry parameter, phase is to deal with

interference terms and background is a constant background term.
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