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Chapter 1

Introduction

“The further a mathematical theory is developed, the more harmoniously and uniformly does

its construction proceed, and unsuspected relations are disclosed between hitherto separated branches

of the science.

David Hilbert

1.1 Prologue

In the 4th century B.C., Plato advocated that celestial motion was flawless and, therefore,

uniform circular motion could explain all motion in the cosmos through the “Spindle of Necessity”

[1]. Plato’s sketch of this spindle had eight perfectly circular rings that carried the moon, the sun,

the five known planets, and the distant stars around the Earth. The Earth was in the center of the

spindle, and divine forces turned its rings, sending the celestial bodies twirling around the Earth,

which was at the center of the universe. Plato knew that his simple sketch of the spindle could

not adequately describe all celestial motion. Most notably, the planets would occasionally deviate

from their steady journeys across the night’s sky and exhibit retrograde motion. Plato posed the

problem of finding an accurate model of celestial motion that only used uniform circular motion to

his contemporary astronomers [2].

Consistent with Plato’s pristine picture of the cosmos, Eudoxus of Cnidus developed the first

mathematical description of celestial motion [2]. In his model, the celestial bodies were attached

to concentric spheres that rotated with constant angular velocities, and the Earth was at the
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center of each sphere. This model could explain the vast majority of celestial motion, including

the retrograde motion of the planets. He accomplished this by using several concentric spheres to

describe the orbit of each celestial body around the Earth. Each celestial body was fixed to a single

rotating sphere; the poles of this sphere were attached to a larger concentric sphere that rotated

at a different velocity; the poles of that sphere were attached to yet another larger sphere; and so

on [3].

However, the apparent brightness of the planets would change, and the Eudoxan model could

not account for this because each planet was attached to a sphere with a constant radius. To

account for the changing glow of the planets, the ancient astronomers allowed for a minor defect

in the Platonic view of planetary motion, suggesting that the planets would slightly deviate from

their trajectories described by rotating spheres. Apollonius of Perga eventually created a model in

which the planets mainly followed a path described by rotating spheres, but the planets also took

additional smaller circular orbits, called epicycles, that were centered on the rotating spheres [2].

These additional orbits were not centered on Earth, allowing the planets to move in the radial

direction and change their apparent brightness. In 152 AD, the astronomer Ptolemy used the idea

of epicycles to create an accurate model of celestial motion [4]. The necessary complications of this

model had brought the notion of flawless celestial motion into question, but the model maintained

Plato’s original concepts of circular motion and a geocentric view of the universe. Due to the

inability of astronomers to make better observations, this model was generally accepted for nearly

two millennia [4].

1.2 Discovery of the Quantum Defect

The ancient astronomers taught us that small alterations to physical models could accurately

describe observations, without tossing aside the concepts behind the model. The study of atomic

and molecular collisions has been no exception to this lesson. A particularly useful example of such

an alteration was the quantum defect, and the modern quantum defect has shown a great ability

to clarify and numerically simplify an enormous variety of complex collisions. The concept of a
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quantum defect came from the semi-classical formulation of quantum mechanics, also known as

the “old quantum theory.” Niels Bohr and Arnold Sommerfield created an exceptionally accurate

model of the hydrogen atom, including its fine structure [5]. However, it was not immediately clear

how to extend their model to describe the spectra of atoms with more than one electron. Erwin

Schrödinger discovered that he could approximately describe the energy levels of these atoms by

allowing the trajectory of an electron in an atom to deviate from its path described by the Bohr-

Sommerfield model and then quickly return [6]. He described this deviation in terms of a quantum

defect.

In 1913, well before the formulation of modern quantum mechanics, Bohr conjectured a

simple model of the atom that was reminiscent of Plato’s spindle. In Bohr’s model of the atom, the

electrons traveled around the nucleus in perfect circles [7, 8], like the rings of Plato’s spindle, and

these orbits were only allowed to have specific radii. Rutherford had recently fired alpha particles

at a sheet of gold foil and discovered that the atom was mostly empty space with a heavy, positively

charged nucleus, suggesting that the lighter, negatively charged electrons were orbiting around the

nucleus like the planets around the sun [9]. Knowing that these accelerating electrons would emit

radiation and quickly collapse into the nucleus, Bohr posited that the electrons occupied stationary

states of circular motion and would only emit radiation by jumping between two of these states.

He further posited that these states only occurred when the electron’s angular momentum was an

integer multiple of Planck’s constant ~ = h/2π. Using these laws, Bohr derived a formula for the

energy levels of the hydrogen atom that was in remarkable agreement with the empirical Rydberg

series [5],

En = −RHhc/n
2, (1.1)

where RH is the Rydberg constant, c is the speed of light, and n is an integer n ≥ 1 that specifies

the electron’s quantized angular momentum n~.

Despite the ability of Bohr’s model to describe the Rydberg series of hydrogen and even all

hydrogenic ions by including the nuclear charge Z, this model could not describe the fainter fine
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structure spectral lines of hydrogen that had already been discovered by Michelson and Morley

in 1887. In the years 1915 and 1916, Sommerfield offered an extension of Bohr’s model that was

able to produce this fine structure by allowing the electrons to move in the radial direction [5].

In his model, the electrons took elliptical orbits around the nucleus, further relating the structure

of the atom to the solar system. Instead of simply quantizing angular momentum, these elliptical

orbits required the classical action of an electron’s orbit around the nucleus to be quantized. In

polar coordinates (φ,ρ), the integral of an electron’s generalized momentum (pφ, pρ) over a closed

loop around the nucleus had to be equal to an integer (n,n′) multiple of ~. This so called “Bohr-

Sommerfield quantization” produced the following allowed energy levels [5],

Enn′ =−RHhcZ
2
(
1− ε2

)
/n2 (1.2a)

=−RHhcZ
2/(n+ n′)2, (1.2b)

where ε =
√

1− n2/(n+ n′)2 was the eccentricity of the electron’s orbit, and the integer n′ was in

the range 0 ≤ n′ < n. When n′ = 0, the electron’s orbit was a circle.

Because the energy levels of hydrogen in Sommerfield’s model only depended on the sum of

n and n′, as seen in equation (1.2b), the elliptical orbits maintained the same discrete spectrum of

hydrogen as the circular orbits in Bohr’s model, which produced the energy levels in equation (1.1).

Additionally, Sommerfield derived a relativistic correction to these energy levels by allowing the per-

ihelion of the elliptical orbits to precess around the nucleus and by including Einstein’s relativistic

effects [5],

Enn′ = −RHhcZ
2

n2

(
1 +

α2Z2

n2

(
n

n− n′
− 3

4

))
, (1.3)

where α is the fine structure constant. These energy levels accurately described the fine structure

of hydrogen by making a small correction to the energy levels in Bohr’s model. This correction

depended on the value of n′ and, therefore, the shape of the electron’s orbit.

However, because the Bohr-Sommerfield model did not account for interactions between

electrons, it was essentially a model of only the hydrogen atom and hydrogenic ions, which only
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have one remaining electron. In 1921, Schrödinger discovered an approximate way to describe more

complex atoms in terms of a quantum defect ∆ and an effective quantum number n∗ = n+ n′ −∆

that was not an integer [6]. Using the Bohr-Sommerfield model of the atom, Schrödinger divided

the path of an electron around the nucleus into a long-range region and a short-range region. He

suggested that an electron at long range was almost entirely screened from the nuclear charge by

the other electrons that were in a small region around the nucleus. At long range, an electron

followed an orbit of eccentricity ε and with the energy in equation (1.2b) with Z = 1, but when the

electron came close to the nucleus it would deviate from its trajectory and quickly take an additional

tighter path around the nucleus with eccentricity ε′, experiencing the full nuclear charge Z. After

completing the tighter path, the electron was flung back out onto its original trajectory, completing

the full loop. A similar description of electrons penetrating the atomic core was also given by Bohr

around the same time [10].

Schrödinger used this distorted trajectory of an electron to approximate a value of ∆, which

was dependent on Z [6]. The effective quantum number n∗ implied the following energy levels of

an atom,

Enn′ = −RHhc/
(
n+ n′ −∆

)2
. (1.4)

Schrödinger called ∆ the “Quantendefekt” in German [6]. This translates to “quantum defect”

in English, and he was the first to use this term [11]. Although he only considered n′ & 1,

excluding circular orbits (n′ = 0), he found that the value of ∆ was independent of n′. For sodium,

he predicted a value of ∆ ≈ .74, corresponding to a value of n′ − ∆ ≈ 1.26 for n′ = 1. The

number 1.26 was a surprisingly good approximation to what would soon after become known as

the s-wave (l = 0) quantum defect of sodium µ(l=0) = 1.35 [11].

Guided by these semi-classical models and the high-resolution spectroscopy of atoms, Schrödinger

developed a quantum theory of wave mechanics in 1925 [12] and helped formulate modern quantum

mechanics. The concept of a quantum defect remained. In light of modern quantum mechanics, it

became clear that the valence electrons in atoms have some probability of being inside the atomic
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core and that this probability decreases with increasing orbital angular momentum l. The quantum

defect µl (in modern notation) is simply related to the short-range phase shift δl = µlπ that an

electron accumulates by penetrating into the atomic core, in addition to the long-range phase shift

of the Coulomb potential [11]. Hence, the quantum defect is largest for s-wave states (l = 0). This

concept is widely applicable to the field of atomic physics, and perhaps the most well-known use

of the quantum defect is to approximately describe the energy levels of a hydrogenic atom, such as

an alkali atom, which has a single electron in its valence shell [11],

Enl = −RHhc/(n− µl)2, (1.5)

where the quantum defect µl takes the place of ∆− n′ in equation (1.5).

1.3 Quantum Defect Theory

The key principle behind the quantum defect was Schrödinger’s idea of separating the com-

plex short-range physics from the far simpler long-range physics. In 1928, Douglas Hartree laid

the foundation for modern quantum defect theory (QDT) [13]. He solved the radial Schrödinger

equation for an electron in an alkali atom that was screened from the nuclear charge by a spherical

charge distribution of radius r0. Inside this region, he normalized the inner wave function in a

way that was insensitive to small changes in energy. Outside this region, he used the analytically

known solutions to the Coulomb potential. Matching these solutions together at r0, he derived

equation (1.5) from the long-range properties of the Coulomb solutions. In the following decades,

much interest was generated in QDT through studies that took advantage of the analytically known

Coulomb solutions. The work of Bates and Damgaard in 1949 [14] used QDT to provide a powerful

method of computing bound to bound transitions in atomic systems, and the work of Burgess and

Seaton in 1960 [15] used QDT to explore photoionization in atomic systems.

The work of Gailitis [16] in 1963 considered multiple states of the ionic core and developed

a multichannel quantum defect theory (MQDT) that could describe a more elaborate energy de-

pendence than the simple expression in equation (1.5), including atoms with open shells in the
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ionic core and scattering resonances. Since the introduction of MQDT, it was extensively devel-

oped for the analysis of complex atomic spectra by Ham, Seaton, Fano, and Rau [17–19]. In such

multichannel situations the radial Schrödinger equation is replaced by a series of N coupled ra-

dial Schrödinger equations, where N is the number of channels. The coupling between weakly

bound or quasi-bound states and scattering states allows for sharp scattering resonances, known

as Fano-Feshbach resonances. As an aside, the basic treatment of how a bound state autoionizes

into a degenerate continuum was first developed by Rice in 1933 [20], and the asymmetry of the

resulting spectral line shape was first described by Fano in 1935 [21]. Fano and Feshbach separately

elaborated on the description of these resonances around 1960 [22,23], leading to the current name

for these so called Fano-Feshbach resonances (FRs).

In the 1970’s, the work of Fano [24,25] first generalized MQDT to describe the electronic spec-

tra of molecules, and the work of Jungen explored applications to molecular problems as well [26].

The work of Greene et al. in 1979 [27] made further generalizations of MQDT, breaking away

from only using the typical Coulomb potential. This work applied MQDT to problems with 1/r2

long-range potentials and problems with no long-range potentials, in addition to the Coulomb po-

tential. These generalizations continued in the 1980’s through the works of Greene, Fano, Rau,

Mies, Julienne, and Jungen [19, 28–33], who used the generalized form of MQDT to successfully

describe, for example, the dipole interaction between an electron or an ion with a polar molecule,

the polarization interaction between an electron or an ion with an atom, and the van der Waals

interaction between atoms or molecules. More recently, Greene, Bohn, Raoult, Gao, and Hutson

(among many others) have fruitfully applied MQDT to atomic and molecular collisions [34–36],

and, in particular, cold collisions [37–39].

1.4 Cold Collisions

Today, the constituents of cold gaseous matter continue to grow in variety and complexity

far beyond their origins in alkali atoms to encompass open shell atoms, molecules, free radicals,

and ions [40]. A detailed understanding of their collision processes is crucial in determining the
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properties of these gases and in finding prospects for control of these gases.

However, along with the growing complexity of the atoms and molecules involved, the diffi-

culty of accurate scattering calculations grows as well. High-spin and open-shell atoms contain a

multiplicity of internal states, and molecules incorporate rotational and vibrational degrees of free-

dom. At ultralow temperatures, all of these degrees of freedom must be accounted for because they

all describe energies that are typically large compared to translational kinetic energies in the gas.

Moreover, anisotropic species are likely to involve angular momentum partial waves far larger than

the single value L = 0 that often dominates alkali-atom cold collisions. These considerations can

lead to enormous complexity, even in seemingly straightforward problems. Consider for example

the scattering of Li atoms with ground state Li2 molecules, which necessitates the simultaneous

solution of thousands of coupled Schrödinger equations [41].

It is therefore worthwhile to explore alternative methods of scattering theory that are less

computationally intensive, yet still accurate. MQDT is a particularly appealing candidate for

this purpose, as it takes into account the natural separation of length and energy scales in a

collision problem. In the same that way Schrödinger discovered the quantum defect in 1921, modern

MQDT separates the collision problem into a short-range region and a long-range region. At large

internuclear separations R, the sensitive dependence of scattering observables on energy and electric

or magnetic fields arises from relatively simple interactions between the colliding partners. This

simplicity stems from the ability to describe these sensitive dependences using a separate set of

reference wave functions for each set of quantum numbers that identify a scattering channel. One

can either analytically solve this part of the problem or very quickly produce numerical solutions.

At small R, strong coupling between channels demands that all channels are dealt with at once,

leading to a numerically challenging and slow part of the calculation. However, in this region,

the energy scales driving the physics are far larger than the µK – mK scale of cold collisions.

A properly chosen representation of the small-R wave function can then be quite weakly energy

dependent over the relevant scales, allowing for simple interpolation in energy and field that greatly

reduces computational time.
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In recent years, various approaches have been applied to cold collisions with an aim of de-

scribing and predicting scattering observables and, in particular, the locations and widths of Fano-

Feshbach resonances. For example, recent developments in MQDT and related ideas have stressed

the simplicity and analytic behavior of the theory [34, 42–49]. Also, the analysis of long-range

s-wave solutions, developed in reference [50], resembles quantum defect ideas to a degree. This

analysis adopts semiclassical ideas and creates a good approximation to the long-range field so-

lutions. In parallel developments, the asymptotic bound state method stresses a direct numerical

diagonalization in a basis of singlet and triplet states that are coupled by hyperfine and magnetic in-

teractions [51–53]. This method has generated extremely rapid and accurate numerical calculations

in these cases.

1.5 Outline

The work presented in this thesis describes a version of MQDT that is easy to implement and

that accurately describes scattering calculations, gaining both numerical efficiency and conceptual

insights over other types of calculations. Chapters 2 and 3 develop the theoretical framework of this

work. In chapter 2, we define a standardization of MQDT that allows the long-range QDT param-

eters to be independent of the short-range interactions, and we derive analytic expressions for the

threshold behavior of these parameters. This unique standardization ensures that the numerically

computed reference wave functions are maximally linearly independent at long-range, even in the

case of high partial waves, where a large classically forbidden region at ultracold collision energies

can cause the numerical reference wave functions to lose their linear independence. In chapter 3,

we extend MQDT to incorporate long-range anisotropic interactions that are typically ignored in

applications of MQDT. We accomplish this by using a unique distorted wave approximation that

generates perturbed scattering observables in terms of parameters that are weakly dependent on

energy and field, retaining the accuracy and the numerical efficiency of MQDT.

Chapters 4 and 5 provide examples of our formulation of MQDT. These examples illustrate

the accuracy and efficiency of MQDT and our extensions of the method. Simultaneously, these
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examples explore the properties of exotic atomic and molecular cold collisions. In chapter 4, we use

alkali-atom collisions as a test bed for this formulation of MQDT, and we explore a few examples of

alkali-atom collisions in detail, providing an extensive characterization of Fano-Feshbach resonances

in these systems. We also demonstrate the principles of the perturbative MQDT method in this

chapter, and we explore the ability of the perturbative MQDT method to incorporate the effects of

strong magnetic dipole-dipole interactions. In chapter 5, we provide the modifications to MQDT

that cold molecular scattering and cold chemistry require. As an example, we apply this method

to non-reactive and reactive molecular collisions. We demonstrate that the efficiency and some

conceptual simplifications of atomic MQDT carry over to the case of molecular scattering.



Chapter 2

Multichannel Quantum Defect Theory

This chapter contains material in reference [54].

2.1 Introduction

This chapter describes how to retain the analytic structure of Multichannel Quantum Defect

Theory (MQDT) and simultaneously perform numerically exact scattering calculations. On the

one hand, MQDT describes both the long-range physics and the short-range physics in terms of

simple parameters. We derive analytic expressions for the long-range parameters in the limit of

small collision energy, and the short-range parameters are nearly independent of energy and field.

This treatment of the short-range physics eschews a repeated numerical calculation of the short-

range wave functions and, therefore, leads to numerically efficient scattering calculations. On the

other hand, our implementation of MQDT is numerically exact, even in the case of realistic long-

range potentials that are not purely of −C6/R
6 character and that possess high centrifugal angular

momentum.

The accuracy of MQDT relies on the availability of a pair of accurate, linearly independent

reference wave functions in each channel. Generating these wave functions can become problematic

in cases of high partial wave angular momentum and extremely low collision energy, where there

exists a substantial region of classically forbidden motion under a centrifugal barrier. Such a barrier

is problematic because two reference wave functions that are perfectly linearly independent prior

to entering the barrier can often become approximately linearly dependent (hence useless to the
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theory) under and beyond this barrier. Previously, defining an additional set of linearly independent

reference wave functions beyond a classical barrier has allowed for this type of difficulty to be

reduced by matching the two sets of reference wave functions under the barrier [37,55,56].

Our main focus here is to determine reference wave functions in a way that maximizes their

linear independence, even under the centrifugal barrier, and to develop an MQDT method in terms

of these reference wave functions. In chapter 4, we apply this method to the scattering of alkali

atoms for which reasonably accurate Hamiltonians exist. The long-range interactions in these

systems include contributions from C8/R
8 and C10/R

10 in addition to the usual C6/R
6. MQDT

reproduces the full numerical calculation of scattering observables quite accurately with orders of

magnitude less computational effort. In particular, this version of MQDT accurately reproduces

magnetic field Fano-Feshbach resonances, even those that reside in high-partial-wave states.

2.2 Scattering in the MQDT Picture

Two colliding atoms or molecules experience the potential energy V (R), where R is the

internuclear separation and V (R) is an operator that includes spin. We expand the wave function

in a basis of scattering channels that correspond to the internal states of the particles and their

partial-wave quantum number L,

ψ(R,Ω) = R−1
N∑
i=1

Φi(Ω)ψi(R). (2.1)

The symbol Ω represents all angular coordinates and internal degrees of freedom. The index i

labels the scattering channels, and N is the number of channels. This wave function satisfies a set

of coupled radial Schrödinger equations involving the full potential matrix V (R),

N∑
j=1

[(
− d2

dR2
+
Lj(Lj + 1)

R2

)
δij + Vij(R)

]
ψ

(α)
j (R) = Eiψ

(α)
i (R), (2.2)

where Ei = E − Ethresh
i is the asymptotic kinetic energy in channel i, E is the total energy, and

Ethresh
i is the threshold energy of the i-th channel. The collision energy is the asymptotic kinetic

energy in the incident channel Ei=inc = E−Ethresh
i=inc . The symbol δij is the Kronecker delta function.
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The superscript α labels linearly independent solutions to equation (2.2) at a total energy E. Here

and throughout the rest of this thesis (unless otherwise specified), R is in units of β, and all energies

are in units of Eβ = ~2/2µβ2, where µ is the reduced mass. The form of V (R) at long range suggests

the value of β through the relation −~2/2µβ2 = Vii(β) for a convenient channel i.

For example, in the collision of 40K + 87Rb, which we discuss in later sections, the isotropic

potential −C6/R
6 accurately characterizes V (R) at long range. The natural unit of length is the

van der Waals length β = (2µC6/~2)1/4 = 143.9 a0, and Eβ = 152.7 µK, where a0 is the Bohr

radius. In this example, we only consider collisions between s-wave atoms, which both have zero

internal orbital angular momentum ~l = 0. We describe each atom by its electronic spin ~s and

by its nuclear spin ~i. We choose the scattering-channel basis |fK,mfK〉 |fRb,mfRb
〉 |L,ML〉, where

~f = ~s+~i is the total spin of each atom. In the presence of an external magnetic field, the scattering

channels are eigenstates of the following Hamiltonian,

Hthresh =
2∑
j=1

Aj~sj ·~ij + (gs,jsz,j + gi,jiz,j)µBB, (2.3)

which includes the hyperfine interaction and the Zeeman interaction with an external magnetic

field ~B = Bẑ. The threshold energies Ethresh
i are the eigenvalues of Hthresh. The index j labels the

two atoms, A is the hyperfine constant, gs is the electronic gyromagnetic ratio, gi is the nuclear

gyromagnetic ratio, and µB is the Bohr magneton. We find it convenient to choose the zero of

energy such that Ethresh
i=inc = 0, causing the collision energy to equal the total energy.

When the total energy E is greater than the lowest threshold energy, a continuum of physical

scattering solutions exists. One can calculate scattering observables at E by solving equation (2.2)

subject to physical scattering boundary conditions. A physical scattering solution at E vanishes

at the origin in all channels and asymptotically vanishes in all closed channels. The i-th channel is

said to be closed if it has a negative asymptotic kinetic energy Ei < 0. Conversely, the i-th channel

is said to be open if Ei ≥ 0. For a given total energy E, there are No open channels, and there are

No linearly independent physical scattering solutions to equation (2.2).

We represent a particular set of physical scattering solutions by the matrix Ψij(R) = ψ
(j)
i (R),
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where i runs from 1 to N and j runs from 1 to No. Hence, the columns of Ψ(R) represent No linearly

independent wave functions with energy E, and each row of Ψ(R) corresponds to a unique channel.

In each channel i, Ψ(R) has the following boundary conditions at R = 0,

Ψij(0) = 0. (2.4)

Asymptotically, Ψ(R) has the following, standard boundary conditions. In each open channel i,

Ψij(R)
R→∞−−−−→ 1

2i
√
ki

(
e−i(kiR−Liπ/2)δij − ei(kiR−Liπ/2)Sphys

ij

)
, (2.5)

where ki =
√
Ei. In each closed channel i,

Ψij(R)
R→∞−−−−→ 0. (2.6)

This set of equations defines the physical scattering matrix Sphys, which contains all the information

necessary to compute scattering observables, including resonance behavior and threshold effects.

As an aside, when the total energy E is less than the lowest threshold energy, physical solutions

only exist at a set of total energies Eλ that correspond to bound state wave functions. At a bound

state energy Eλ, there are zero open channels, and the bound state wave function has the boundary

conditions in the set of equations (2.4) and (2.6) in all channels.

One accurate way to determine Sphys is the full-close coupling (FCC) method. The N ×N

log-derivative matrix Y (R) = dΨ(R)
dR Ψ−1(R) represents the log-derivative of N linearly independent

solutions to equation (2.2) that have vanishing boundary conditions at the origin. This matrix

has the boundary conditions Yij(R) → ∞δij in the limit R → 0. Numerically, we achieve the

R→ 0 boundary conditions on Y (R) by simply filling the diagonal elements of Y (R) with the same

very large number and by filling the off-diagonal elements of Y (R) with zero at R ≈ 0. The FCC

calculation propagates Y (R) from R ≈ 0 to the limit R → ∞, and the open channels of Y (∞)

describe the standard, physical scattering matrix Sphys. This calculation is a numerically accurate

method of solving the scattering problem; however, it also tends to be quite time-consuming for

large N , as the computational time scales as N3 [57].
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MQDT offers a more efficient way to determine Sphys. Beyond some intermediate dis-

tance Rm, MQDT breaks the full potential V (R) into two parts: an isotropic long-range poten-

tial V lr(R) and the remaining potential V ′(R),

Vij(R) = V lr(R)δij + V ′ij(R). (2.7)

For many problems, such as atoms and molecules interacting via van der Waals potentials, the

coupling between channels of V (R) is weak beyond Rm, and the potential V ′(R) makes a relatively

small contribution. The value of Rm and the form of V lr(R) depend on the scattering partners.

For non-polar atoms and molecules, the long-range potential takes the form,

V lr(R) = −C6/R
6 − C8/R

8 − C10/R
10. (2.8)

For alkali-atom collisions, V lr(R) is typically a good approximation to the full potential beyond

Rm ≈ 30− 50 a0.

The primary goal of MQDT is to represent Sphys in terms of a set of parameters that are

smooth in energy and applied fields. This allows for the efficient calculation of narrow scattering

features by interpolating the smooth parameters instead of performing a separate calculation at

every energy and field of interest. MQDT achieves this representation of Sphys by separately

describing the short-range physics and the long-range physics of the scattering problem.

2.2.1 Reference Wave Functions and the Short-range K-matrix

In the region R ≤ Rm, we describe the short-range physics by giving the log-derivative ma-

trix Y (R) = dΨ(R)
dR Ψ−1(R) the same boundary conditions near the origin as in the FCC calculation,

such that Y (R) represents the log-derivative of N independent solutions to equation (2.2) with van-

ishing boundary conditions at the origin. Unlike the FCC calculation, we do not propagate Y (R)

to the limit R→∞. We only propagate Y (R) up to Rm. Beyond Rm, we describe the long-range

physics by taking advantage of the simple form of the potential energy V (R) when V ′(R) = 0. In

this case, equation (2.2) reduces to the single-channel radial Schrödinger equation involving the
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long-range isotropic reference potential V lr(R),

(
− d2

dR2
+
Li(Li + 1)

R2
+ V lr(R)− Ei

) f̂i(R)

ĝi(R)

 = 0, (2.9)

where f̂(R) and ĝ(R) are two linearly independent single-channel reference wave functions. As long

as f̂(R) and ĝ(R) are linearly independent, we can represent any long-range solution as a linear

combination of these reference wave functions.

At the matching radius Rm, we match the short-range solutions and the long-range solutions

together. We accomplish this matching by defining a wave function matrix M(R) that has the

log-derivative boundary condition Y (R) = dM(R)
dR M−1(R) at Rm. This boundary condition allows

M(R) to vanish at the origin in all channels, regardless of the normalization we choose for M(R).

We represent M(R) at R ≥ Rm as a linear combination of the reference wave functions f̂(R) and

ĝ(R),

Mij(R) = f̂i(R)δij − ĝi(R)Ksr
ij . (2.10)

This equation defines the N × N matrix Ksr. Since we have the freedom to choose a particu-

lar normalization of M(R) without changing its log-derivative at Rm, we force the coefficient in

front of f̂(R) in equation (2.10) to equal the N × N identity matrix so that M(R) has the same

normalization as f̂(R) at Rm.

Tying together the normalization ofM(R) and f̂(R) allows us to optimally design the smooth-

ness of Ksr in energy and field by choosing the boundary conditions of f̂(R) and ĝ(R). We choose

to give these reference wave functions a WKB-like normalization at Rx << 1 [28,29,34],

f̂i(R) =
1√
ki(R)

sin(

∫ R

Rx

ki(R
′)dR′ + φi) at R = Rx (2.11a)

ĝi(R) = − 1√
ki(R)

cos(

∫ R

Rx

ki(R
′)dR′ + φi) at R = Rx, (2.11b)

where ki(R) =
√
Ei − V lr(R). The set of equations (2.11) and their full radial first-derivatives define

f̂(R) and ĝ(R). We obtain these reference wave functions by numerically solving equation (2.9)

subject to these boundary conditions.
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We define the channel-dependent phase φi at Rx, and we discuss the choice of this phase in

detail in section 2.4. We must choose the location Rx to be small enough such that the asymptoti-

cally closed channels are locally open at Rx in the reference potential V lr(R). A channel is said to

be locally open at R when the kinetic energy in the channel is positive at R. In this case, the kinetic

energy Ei − V lr(Rx) must be greater than zero in all channels, allowing one to use the WKB-like

boundary conditions in the set of equations (2.11). The choice of Rx = 0.1 allows a range of Ei

that is suitable for typical ultracold alkali-atom collisions.

In order to determine Ksr, we numerically propagate f̂(R) and ĝ(R) from their boundary

conditions at Rx to the location Rm. We choose Rm at a location where all channels of V (R)

remain locally open. At such a location, the colliding atoms or molecules have a large kinetic

energy that dominates the small collision energies of ultracold scattering. This kinetic energy also

dominates the typical Zeeman (Stark) energy shift due to an applied magnetic (electric) field. Since

the WKB-like normalization depends on the local wave vector ki(R) in each channel i, the reference

wave functions, and therefore M(R), are weakly dependent on energy and applied fields at Rm.

Moreover, these wave functions are energy-analytic across threshold. Ideally, this gives Ksr a weak

dependence on energy and field as well, even when a channel crosses threshold. We show examples

of Ksr as a function of energy and field in chapters 4 and 5.

Using our representation of M(R) in terms of f̂(R) and ĝ(R) in equation (2.10), we match

the log-derivative of M(R) to Y (R) at Rm and solve for Ksr,

Ksr =

(
Y (R)ĝ(R)− dĝ(R)

dR

)−1
(
Y (R)f̂(R)− df̂(R)

dR

)∣∣∣∣∣
R=Rm

. (2.12)

We use this equation to numerically determine Ksr. In equation (2.12) we promote f̂(R) and ĝ(R)

to N ×N diagonal matrices.

2.2.2 The QDT Parameters

The matrix Ksr and the linearly independent reference wave functions f̂(R) and ĝ(R) contain

all the information necessary to calculate scattering observables. The quantum defect theory of
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reference [34] defines the four QDT parameters η, A, G, and βQDT that describe the asymptotic

behavior of the wave functions f̂(R) and ĝ(R). These parameters are weakly dependent on energy

and field and completely describe the long-range physics. The notation in this thesis only differs

from the notation of reference [34] by the use of γ instead of βQDT, where cot γ = tanβQDT (Note:

We have added the subscript “QDT” to avoid confusion between the parameter βQDT and the length

scale β). The introduction of γ emphasizes its relationship with G, and section 2.3 demonstrates

this relationship.

As we will demonstrate in section 2.3, the calculation of Sphys requires two linearly inde-

pendent, energy-normalized wave functions at large R in each open channel and the bound state

wave function in each closed channel. To this end, we define the two open-channel reference wave

functions f(R) and g(R) by their asymptotic normalization and phase. For Ei > 0,

fi(R)
R→∞−−−−→ 1√

ki
sin(kiR− Liπ/2 + ηi) (2.13a)

gi(R)
R→∞−−−−→ − 1√

ki
cos(kiR− Liπ/2 + ηi), (2.13b)

where ki =
√
Ei is the asymptotic limit of ki(R). The normalization factor of 1/

√
ki defines the

energy-normalization of f(R) and g(R). Equation (2.13a) defines the parameter η. The refer-

ence wave functions f(R) and g(R) have an asymptotic phase shift of η from the spherical Bessel

functions jL(kR) and nL(kR),

jLi(kiR)
R→∞−−−−→ sin(kiR− Liπ/2)

kiR
(2.14a)

nLi(kiR)
R→∞−−−−→ −cos(kiR− Liπ/2)

kiR
. (2.14b)

We use the parameters A and G to create a Wronskian-preserving transformation between the

reference wave functions f̂(R) and ĝ(R) and the reference wave functions f(R) and g(R) for Ei > 0, fi(R)

gi(R)

 =

 A1/2
i 0

A−1/2
i Gi A−1/2

i


 f̂i(R)

ĝi(R)

 . (2.15)

This transformation defines the parameters A and G. The parameter A is responsible for the
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energy-normalization of f(R) and g(R), and the parameter G accounts for the different phase that

f̂(R) and ĝ(R) accumulate in V lr(R) when Ei > 0.

For Ei < 0, the parameter γ determines the linear combination of f̂(R) and ĝ(R) that

vanishes as R → ∞. We represent this linear combination by the reference wave function χ−(R).

For Ei < 0,

χ−i (R) = f̂i(R) sin γi + ĝi(R) cos γi
R→∞−−−−→∝ e−κiR, (2.16)

where κi(R) = ik(R) and κi(R) assumes its asymptotic value κi =
√
|Ei| in equation (2.16). This

equation defines γ.

We simply calculate the four MQDT parameters in terms of several Wronskians that involve

the asymptotic limit of f̂(R) and ĝ(R),

tan η =
W
(

(kR)jL(kR), f̂(R)
)

W
(

(kR)nL(kR), f̂(R)
)∣∣∣∣∣

R→∞

(2.17a)

A−1 =
W
(

(kR)jL(kR), f̂(R)
)2

+W
(

(kR)nL(kR), f̂(R)
)2

k

∣∣∣∣∣
R→∞

(2.17b)

G = − W (g(R), ĝ(R))

W
(
g(R), f̂(R)

)∣∣∣∣∣
R→∞

(2.17c)

tan γ = −
W
(
e−κR, ĝ(R)

)
W
(
e−κR, f̂(R)

)∣∣∣∣∣
R→∞

, (2.17d)

where W (y1(R), y2(R)) is the Wronskian with respect to R of any two functions y1(R) and y2(R),

W (y1, y2) = y1(R)
dy2(R)

dR
− y2(R)

dy1(R)

dR
. (2.18)

Additionally, although Sphys does not depend on the sign of A1/2, we can calculate A1/2 from η

and the asymptotic limit of a Wronskian,

A−1/2 = − csc ηW
(

(kR)jL(kR), f̂(R)
)∣∣∣∣∣
R→∞

. (2.19)
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2.3 Zeroth-Order MQDT

Typical applications of MQDT simply set V ′(R) = 0 beyond Rm. We refer to the choice

of V ′(R) = 0 as “zeroth-order” MQDT. In chapter 3, we develop an extension of MQDT that

includes the effects of V ′(R) beyond Rm using perturbation theory. In this section, we describe the

zeroth-order MQDT calculation, following reference [54]. Note that the same ideas and notations

re-appear in chapter 3. Since V ′(R) = 0 in this section, we denote M(R) as M (0)(R) beyond Rm,

where the zero superscript on M (0)(R) emphasizes that this wave function matrix only solves

equation (2.2) when V ′(R) = 0. We use the zero superscript in the same manner throughout the

rest of this thesis.

When V ′(R) = 0 beyond Rm, V lr(R) is a complete representation of the full potential

beyond Rm. Thus, the reference wave functions f̂(R) and ĝ(R), as well as the representation

of M (0)(R) in equation (2.10), are numerically exact solutions to equation (2.2) in the region

Rm ≤ R <∞. We compactly represent the asymptotic behavior of the reference wave functions in

terms of the four weakly energy-dependent QDT parameters: η, A, G, and γ. The QDT parame-

ters and Ksr fully specify the asymptotic normalization and phase of M (0)(R), providing all of the

information required to calculate scattering observables. We demonstrate below that we can use

Ksr and the QDT parameters to efficiently compute Sphys in three steps.

Because we separately handle the open channels and the closed channels in these steps, we

partition the wave function matrices f̂(R) and ĝ(R) into open (P) channels and closed (Q) channels.

The matrices f̂P(R) and ĝP(R) are No×No diagonal matrices whose diagonal elements consist of the

open-channel reference wave functions f̂(R) and ĝ(R), respectively. The matrices f̂Q(R), ĝQ(R),

and χ−Q(R) are Nc ×Nc diagonal matrices whose diagonal elements consists of the closed-channel

reference wave functions f̂(R), ĝ(R), and χ−(R), respectively, where Nc is the number of closed

channels. Likewise, we promote the QDT parameters to diagonal matrices of the appropriate sizes.

The matrices A, G, and η are No × No diagonal matrices whose diagonal elements consist of the

open-channel QDT parameters A, G, and η, respectively. The matrix γ is an Nc × Nc diagonal
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matrix whose diagonal elements consist of the closed-channel QDT parameter γ. We also use these

same matrices in chapter 3.

2.3.1 Closed Channel Elimination

First, we use the closed-channel QDT parameter γ to transform M (0)(R) into the N × No

physical wave function matrix F̂ (0)(R). We demand that this physical wave function matrix van-

ishes as R → 0 in all channels, and we demand that it vanishes as R → ∞ in the asymptotically

closed channels. We enforce both of these boundary conditions on F̂ (0)(R) by performing the linear

transformation F̂ (0)(R) = M (0)(R)B, where B is an N ×No constant matrix. This transformation

forms F̂ (0)(R) by taking linear combinations of the columns of M (0)(R), which all vanish at the ori-

gin. Therefore, F̂ (0)(R) must also be zero at the origin, regardless of the value of B. The constant B

specifies the No particular linear combinations of the columns of M (0(R) that asymptotically van-

ish in the closed channels. Since both F̂ (0)(R) and M (0)(R) are solutions to equation (2.2) in the

region Rm ≤ R < ∞ when V ′(R) = 0, this transformation and the determination of B can take

place at any location R ≥ Rm.

We can find a representation of F̂ (0)(R) in terms of only Ksr and the QDT parameter γ.

To achieve this, we write F̂ (0)(R) as a linear combination of f̂(R) and ĝ(R) in all channels. We

represent the open channels of F̂ (0)(R) by the No ×No matrix F̂
(0)
P ,

F̂
(0)
P (R) = f̂P(R)− ĝP(R)K̃. (2.20)

This equation defines the No × No matrix K̃. The normalization of F̂ (0)(R) does not affect the

vanishing boundary conditions on F̂ (0)(R) at the origin or asymptotically. Therefore, we simply

give F̂
(0)
P (R) a WKB-like normalization by forcing the coefficient in front of f̂P(R) in equation (2.20)

to equal the No ×No identity matrix. In order to enforce the asymptotic boundary conditions on

the closed channels of F̂ (R), we force them to be proportional to χ−(R) of equation (2.16). We
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represent the closed channels of F̂ (0)(R) by the Nc ×No matrix F̂
(0)
Q (R),

F̂
(0)
Q (R) =

(
f̂Q(R) + ĝQ(R) cot γ

)
C (2.21a)

=χ−Q(R) csc γC. (2.21b)

Equation (2.21a) defines the Nc ×No matrix C.

We solve for the constants K̃ and C in terms of the energy-smooth and field-smooth quan-

tities Ksr and γ. Using the expression for M (0)(R) in equation (2.10), we write the following

expression for F̂ (0)(R) in terms of B and Ksr,

F̂ (0)(R) =
(
f̂(R)− ĝ(R)Ksr

)
B. (2.22)

RepartitioningM (0)(R) andB into open (P) channels and closed (Q) channels, we have the following

expression for F̂ (0)(R) beyond Rm in terms of Ksr and B. In block notation, F̂
(0)
P (R)

F̂
(0)
Q (R)

 =

 f̂P(R)− ĝP(R)Ksr
PP −ĝP(R)Ksr

PQ

−ĝQ(R)Ksr
QP f̂Q(R)− ĝQ(R)Ksr

QQ


 BP

BQ

 . (2.23)

We substitute the expression for F̂
(0)
P (R) in equation (2.20) and the expression for F̂

(0)
Q (R)

in equation (2.21a) into equation (2.23), and we equate the coefficients in front of f̂(R) and ĝ(R)

on both sides of this equation. This produces the following complete set of equations for K̃ and C,

I =BP (2.24a)

K̃ =Ksr
PPBP +Ksr

PQBQ (2.24b)

C =BQ (2.24c)

− cot γC =Ksr
QPBP +Ksr

QQBQ, (2.24d)

where I is the No ×No identity matrix. We solve these equations for K̃ and C,

C =− (Ksr
QQ + cot γ)−1Ksr

QP (2.25a)

K̃ =Ksr
PP −Ksr

PQ(Ksr
QQ + cot γ)−1Ksr

QP. (2.25b)
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Therefore, K̃ and C provide a representation of F̂ (0)(R) beyond Rm in terms of Ksr and γ. De-

spite the energy-smooth and field-smooth behavior of Ksr and γ, the matrix K̃ can be a resonant

function of energy or field. This resonant behavior analytically appears in the matrix inverse in

equation (2.25b).

2.3.2 Energy Normalization

Second, we use the QDT parameters A and G to transform F̂ (0)(R) into the N ×No energy-

normalized wave function matrix F (0)(R). Similar to the construction of F̂ (0)(R), we demand that

the No columns of F (0)(R) represent physical solutions that vanish as R → 0 in all channels and

vanish as R → ∞ in all closed channels, but we also demand that these solutions are energy-

normalized. Hence, we simply perform the transformation F (0)(R) = F̂ (0)(R)N , where N is

an No × No matrix. Since F̂ (0)(R) already represents the No solutions with physical boundary

conditions, the transformation constant N merely specifies the energy-normalization of F (0)(R).

This transformation and the determination of N can occur at any location R ≥ Rm.

In order to achieve the energy-normalization of F (0)(R), we write the open channels of F (0)(R)

in terms of the energy-normalized reference wave functions f(R) and g(R) of equation (2.13). We

represent the open channels of F (0)(R) by the matrix F
(0)
P (R),

F
(0)
P (R) = fP(R)− gP(R)K. (2.26)

This equation defines the No×No matrix K. The matrices fP(R) and gP(R) are No×No diagonal

matrices filled with the open channel reference wave functions f(R) and g(R), respectively. In

equation (2.26), we demand that the coefficient in front of fP(R) is equal to the No ×No identity

matrix so that F
(0)
P (R) has the same energy-normalization as fP(R).

In order to find a representation of F
(0)
P (R) in terms of Ksr and the QDT parameters, we

represent F
(0)
P (R) as a linear combination of f̂P(R) and ĝP(R). We use the transformation in

equation (2.15) to write equation (2.26) in terms of f̂(R) and ĝ(R), and we substitute the resulting

expression for F
(0)
P (R) and the expression for F̂

(0)
P (R) in equation (2.20) into the open channels of
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the transformation F (0)(R) = F̂ (0)(R)N . Equating the coefficients in front of f̂P(R) and ĝP(R) on

both sides of this equation, we derive the following expressions for N and K,

N =
(
I + GK̃

)−1
A1/2 (2.27a)

K =A1/2K̃
(
I + GK̃

)−1
A1/2. (2.27b)

Since K̃ is known in terms of Ksr and γ in equation (2.25b), K provides a representation of F
(0)
P (R)

beyond Rm in terms of energy-smooth and field-smooth quantities.

2.3.3 The Scattering Matrix

Finally, we use the QDT parameter η to transform F (0)(R) into Ψ(R) of equation (2.5). This

requires a simple renormalization of F (0)(R),

Ψ(R) = F (R)(I − iK)−1eiη. (2.28)

We write the standard, physical scattering matrix Sphys of equation (2.5) in terms of K and η,

Sphys = eiη
I + iK

I − iK
eiη. (2.29)

This equation for Sphys, equation (2.27b) for K, and equation (2.25b) for K̃ demonstrate that the

matrix Ksr and the four QDT parameters contain all of the information needed to compute all

scattering observables.

As we demonstrate in section 2.5, the QDT parameters are smooth functions of energy.

Because the Zeeman or Stark effect shifts the threshold energy of the scattering channels, the QDT

parameters are also smooth functions of field. Ideally, Ksr is a smooth function of energy and field

as well. In practice, we numerically determine Ksr and the QDT parameters over a wide range of

energy and field with a coarse spacing in energy and field, and we interpolate their values. We then

use the three equations (2.25b), (2.27b), and (2.29) to efficiently generate Sphys over this whole

range by means of simple MQDT algebra. For clarity, we rewrite this set of equations below,

K̃ = Ksr
PP −Ksr

PQ(Ksr
QQ + cot γ)−1Ksr

QP (2.30a)



25

K = A1/2K̃
(
I + GK̃

)−1
A1/2 (2.30b)

Sphys = eiη
I + iK

I − iK
eiη. (2.30c)

2.4 Standardizing MQDT

Since the QDT parameters clearly depend on the particular choice of reference wave functions,

standardizing this choice allows the QDT parameters for a particular long-range potential to be

tabulated once and for all and defines a simple procedure to find Ksr [34]. In general, the boundary

conditions in equation (2.11) define an infinite family of reference wave functions — one set for

each value of φi. This section identifies a value of φi that guarantees both the maximal numerical

stability of the QDT parameters as well as their smooth, analytic energy behavior. Moreover, since

we use φi to apply the boundary conditions in equation (2.11), the calculation of this phase must

be numerically stable — even at high L — to be useful.
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(b) f̂(R) and ĝ(R) maintain independence.

Figure 2.1: The reference wave functions f̂(R) (red solid curve) and ĝ(R) (green dotted curve) are
shown for Ei ≈ 6.547 × 10−3 in the long-range potential V lr = −1/R6 (blue dashed curve) with
L = 2. At short range, f̂(R) and ĝ(R) are linearly independent. Under the classical barrier, these
functions (a) lose their independence when f̂(R) is chosen to asymptotically coincide with χ+

0 (R)
at zero energy and (b) retain their independence when ĝ(R) is chosen to asymptotically coincide
with χ−0 (R) at zero energy.
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In the manner of reference [34], we standardize the QDT parameters by letting one of the

reference wave functions asymptotically coincide (up to a normalization) with a particular wave

function at zero energy. The choice of this standard, zero-energy wave function, therefore, identifies

a particular value of φi and determines a particular f̂(R) and ĝ(R) at zero energy. We then

obtain the energy dependence of f̂(R) and ĝ(R) from their WKB-like boundary conditions in

equation (2.11). In principle, any value of φi is equally valid as long as f̂(R) and ĝ(R) remain linearly

independent at long range. However, at ultracold energies, motion under a classical centrifugal

barrier can often cause a pair of reference wave functions to become numerically linearly dependent.

It is our goal to find the value of φi that leads (in the limit of zero energy) to maximally linearly

independent reference wave functions under and beyond this barrier.

For all long-range potentials V lr(R) that fall off faster than 1/R2, one can uniquely specify

a zero-energy wave function in V lr(R) as a particular asymptotic linear combination of RL+1 and

R−L, which are zero-energy free-particle wave functions. Likewise, for all long-range potentials that

are asymptotically dominated by −1/R6, the asymptotic limit of every zero-energy wave function

in V lr(R) is a particular linear combination of the two zero-energy solutions χ+
0 (R) and χ−0 (R) in

the long-range potential V lr = −1/R6. We define these analytically known zero-energy solutions

below and give their asymptotic behavior in terms of RL+1 and R−L [58],

χ+
0 (R) =

√
RJ− 1

4
(2L+1)(1/2R

2)
R→∞−−−−→∝ RL+1 (2.31a)

χ−0 (R) =
√
RJ 1

4
(2L+1)(1/2R

2)
R→∞−−−−→∝ R−L. (2.31b)

The zero subscripts on χ+
0 (R) and χ−0 (R) emphasize that these are solutions at exactly zero energy.

Here, Jν(x) is the Bessel function of the first kind. For L > 0, these solutions take their asymptotic

form under the classical barrier at R & 1. From the set of equations (2.31), we see that χ+
0 (R)

rapidly grows as R increases, and it becomes much larger than χ−0 (R). Hence, in all long-range

potentials that are dominated by −1/R6, all zero-energy wave functions are greatly dominated by

the contribution from χ+
0 (R) and start to resemble χ+

0 (R) under the barrier — numerically losing

their linear independence – except for wave functions that are directly proportional to χ−0 (R).
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Figure 2.1(a) shows f̂(R) and ĝ(R) in the long-range potential V lr = −1/R6 with an energy

of Ei ≈ 6.547 × 10−3. This energy corresponds to 1 µK for 40K + 87Rb when C6 = 4.300 × 103

in atomic units. Here, we chose f̂(R) to asymptotically coincide with χ+
0 (R) at zero energy. The

boundary conditions in equation (2.11) ensure the maximal independence of f̂(R) and ĝ(R) at short

range, but they both resemble χ+
0 (R) in the classically forbidden region R & 1. While we choose

f̂(R) to grow like RL+1 under the classical barrier, ĝ(R) also quickly begins to grow in a similar

way. Hence, this choice for f̂(R) leads to a set of reference wave functions that exhibit increasing

linear dependence as the collision energy approaches zero and the classical barrier grows. In fact,

ĝ(R) always asymptotically diverges at zero energy except for a unique value of φi.

Since only χ−0 (R) remains numerically linearly independent from χ+
0 (R) in the limit R→∞,

letting ĝ(R) asymptotically coincide with χ−0 (R) at zero energy guarantees that the zero-energy

limit of ĝ(R) is maximally independent from f̂(R) not only at short range but also well into the

classically forbidden region. Moving away from zero energy causes ĝ(R) to gain a contribution

from χ+
0 (R) asymptotically, but the classically forbidden region becomes smaller. Figure 2.1(b)

shows that this choice for ĝ(R) leads to reference wave functions that are linearly independent at

both short range and long range — even at ultracold energies and high L. Hence, these reference

wave functions are ideal for a numerical calculation of the QDT parameters at ultracold energies.

In order to implement this standardization, one must determine the value of φi that is used

to define f̂(R) and ĝ(R). For long-range potentials in which the zero-energy solutions are known

analytically at all R, this value of φi is easily derived using the values of χ+
0 (R) and/or χ−0 (R)

at Rx. However, since even the zero-energy solutions are only known analytically for a limited

number of power law potentials, numerically calculating φi allows the use of the true long-range

potential for a given scattering problem.

To this end, the zero-energy reference wave functions for φi = 0 are numerically propagated

from their boundary conditions at Rx << 1 to large R >> 1 where V lr(R) takes a simple form.

At R >> 1, the zero-energy reference wave functions are well approximated by linear combinations

of solutions that are known analytically, and tanφi is a simple ratio of two Wronskians. For
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example, the value of tanφi that lets f̂(R) asymptotically coincide with χ+
0 (R) at zero energy is

given by,

tanφi
R→∞−−−−→

W
(
χ+

0 (R), f̂(φi=0)(R)
)

W
(
χ+

0 (R), ĝ(φi=0)(R)
) . (2.32a)

An alternative choice allows ĝ(R) to asymptotically coincide with χ−0 (R) at zero energy, and this

value of tanφi is given by,

tanφi
R→∞−−−−→ −

W
(
χ−0 (R), ĝ(φi=0)(R)

)
W
(
χ−0 (R), f̂(φi=0)(R)

) . (2.32b)
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Figure 2.2: The convergence of tanφi with R is shown when L = 0 − 3. The reference wave
function f̂(R) is chosen to asymptotically coincide with χ+

0 (R) at zero energy in a long-range
potential of the form V lr = −C6/R

6 − C8/R
8 − C10/R

10, and Rx = 0.1.



31

-1.68

-1.64

-1.6

1 2 3

ta
n

φ
i

R (units of β)
(a) L = 0

0.56

0.6

0.64

1 2 3
ta

n
φ

i
R (units of β)
(b) L = 2

0.067

0.068

0.069

1 2 3

ta
n

φ
i

R (units of β)
(c) L = 10

0.568

0.569

0.57

1 2 3

ta
n

φ
i

R (units of β)
(d) L = 20

Figure 2.3: The convergence of tanφi with R is shown when L = 0, 2, 10, and 20. The reference
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The stable calculation of φi requires the linear independence of the reference wave func-

tions f̂(φi=0)(R) and ĝ(φi=0)(R). As they each asymptotically represent a particular linear combina-

tion of χ+
0 (R) and χ−0 (R), their linear independence relies on their different, and quickly vanishing,

contributions from χ−0 (R). Hence, they can easily lose their linear independence as R grows, caus-

ing the calculation of φi to become unstable. For example, figure 2.2 demonstrates the difficulty

of numerically calculating φi by showing the numerically computed ratio of Wronskians in equa-

tion (2.32a) for several values of L. These calculations use a long-range potential of the form

V lr(R) = −C6/R
6 − C8/R

8 − C10/R
10, where the dispersion coefficients are C6 = 4.300 × 103,

C8 = 4.823 × 105, and C10 = 6.181 × 107 in atomic units. These values are realistic for collisions

of K + Rb [59].

Figure 2.2 shows that the calculation of tanφi, at least for L = 0, converges quickly after

the separation R = 1, where the terms −C8/R
8 and −C10/R

10 of the long-range potential become

dominated by the term −C6/R
6. However, as L increases, a larger value of R is required to converge

this calculation, and figure 2.2 shows that a converged calculation of tanφi is not numerically stable

for L > 1. Section 2.4.1 explores this instability and determines that, for L > 1, finite numerical

noise eventually dominates the asymptotic contribution to each reference wave function from χ−0 (R),

causing the calculation of tanφi to be unstable. If we cannot even stably compute φi, calculating

the QDT parameters is hopeless.

However, section 2.4.1 also shows that this instability vanishes if ĝ(R) is chosen to asymptoti-

cally coincide with χ−0 (R) at zero energy — the same choice as in figure 2.1(b). For only this choice

of ĝ(R), the calculation of φi does not require finding the asymptotic contribution to f̂(φi=0)(R)

and ĝ(φi=0)(R) from χ−0 (R). Hence, in this case, the calculation of tanφi is numerically stable

for all L. In contrast to figure 2.2, figure 2.3 shows the numerically computed ratio of Wronskians

in equation (2.32b), demonstrating that this calculation of tanφi stably converges with R. These

calculations use the same long-range potential as the calculations in figure 2.2 and include much

larger values of L.

The calculations of tanφi in figure 2.3 converge more rapidly as L increases. This trend
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is intuitive because, as L grows, the classical turning point at zero energy moves inward, caus-

ing χ−0 (R) to become increasingly distinct from all other solutions. Moreover, these calculations

of tanφi are stable out to large R & 103. This allows for a more consistent calculation of the QDT

parameters because the value of R at which φi is actually determined can equal the value of R

that is necessary for a well-converged calculation of the QDT parameters. Although either f̂(R) or

ĝ(R) could asymptotically coincide with χ−0 (R) at zero energy, choosing ĝ(R) for this role defines

our standardization because the QDT parameters acquire appealing qualities. Section 2.5 explores

these qualities.

2.4.1 Instability of φi

In this section, we consider the calculation of the phase φi that defines the reference wave

functions f̂(R) and ĝ(R) in equation (2.11). The phase φi describes the particular linear com-

bination of f̂(φi=0)(R) and ĝ(φi=0)(R) that coincides with a wave function of our choice at zero

energy. We choose this wave function according to its asymptotic behavior and define our refer-

ence wave functions at Rx. Therefore, we can determine φi by numerically propagating f̂(φi=0)(R)

and ĝ(φi=0)(R) from their boundary conditions at Rx to large R. However, numerical error causes

this propagation to become unstable in the presence of a centrifugal barrier; hence, the numerical

calculation of φi can also become unstable.

For example, we consider the −1/R6 potential. In this potential, every zero-energy wave

function is a linear combination of the analytically known wave functions in equation (2.31) at all R.

These wave functions have well-known asymptotic behaviors and are exact solutions at all R.

Therefore, their behavior at Rx determines φi without any numerical propagation. Nevertheless,

we can still attempt to numerically determine φi by propagating the wave functions f̂(φi=0)(R)

and ĝ(φi=0)(R) from their boundary conditions at Rx to large R. By studying the deviation of

our numerically determined value of φi from the analytically known value, we characterize the

numerical instability of this calculation. Moreover, we identify a robust method for avoiding this

instability that is easily generalized to any potential that asymptotically decays faster than 1/R2.
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We write the zero-energy wave functions f̂(φi=0)(R) and ĝ(φi=0)(R) in terms of the analytic

wave functions in equation (2.31) by defining a 2× 2 constant matrix c,

f̂(φi=0)(R) = c11χ
+
0 (R) + c12χ

−
0 (R) (2.33a)

ĝ(φi=0)(R) = c21χ
+
0 (R) + c22χ

−
0 (R). (2.33b)

If we choose to let f̂(R) coincide with χ+
0 (R) at zero energy, we can derive an expression for tanφi

in terms of the elements of c by using equation (2.32a),

tanφi =
c11W

(
χ+

0 (R), χ+
0 (R)

)
+ c12W

(
χ+

0 (R), χ−0 (R)
)

c21W
(
χ+

0 (R), χ+
0 (R)

)
+ c22W

(
χ+

0 (R), χ−0 (R)
) =

c12

c22
. (2.34)

However, numerically achieving this value of tanφi is not guaranteed. We can track numerical

error by considering the difference between a particular analytic solution and the same solution

determined numerically. To this end, we expand the zero-energy wave functions χ+
0 (R) and χ−0 (R)

in powers of R at large R,

χ+
0 (R)

R>>1−−−−→ ≈ RL+1 + bRL−3 (2.35a)

χ−0 (R)
R>>1−−−−→ ≈ R−L, (2.35b)

where b is a known constant. The normalization of these wave functions is chosen such that

W (χ−0 (R), χ+
0 (R)) = 2L + 1. We then define two numerically determined wave functions χ+′

0 (R)

and χ−
′

0 (R) that have the same boundary conditions at Rx as the analytic solutions χ+
0 (R) and

χ−0 (R), respectively. Moreover, we demand that χ+′

0 (R) and χ−
′

0 (R) have the exact same asymptotic

normalization as their analytic counterparts.

Numerical error causes the wave functions χ+′

0 (R) and χ−
′

0 (R) to differ from the analytic

solutions in two ways. First, only the leading order terms in their asymptotic expansions agree

exactly. Hence, the asymptotic expansion of χ+′

0 (R) has a coefficient b′ in its second highest order

term that differs slightly from the coefficient b in equation (2.35a). Thus, we represent the numerical

error by the constant δ ≈ b − b′. Second, the numerical wave functions become slightly different

linear combinations of the analytic solutions, such that χ+′

0 (R) gains a contribution from χ−0 (R)
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that is proportional to the error δ. The wave function χ−
′

0 (R) differs from χ−0 (R) in analogous

ways, and we expand both of the numerical wave functions in powers of R at large R,

χ+′

0 (R)
R>>1−−−−→ ≈ RL+1 + b′RL−3 + δR−L (2.36a)

χ−
′

0 (R)
R>>1−−−−→ ≈ R−L + δ

(
RL+1 + bRL−3

)
. (2.36b)

The presence of numerical error also changes the wave functions f̂(φi=0)(R) and ĝ(φi=0)(R).

We call these numerically determined wave functions f̂ ′(φi=0)(R) and ĝ′(φi=0)(R), and they lead

to the numerically determined phase φ′i. We define f̂ ′(φi=0)(R) and ĝ′(φi=0)(R) by their boundary

conditions at Rx. Therefore, these functions are exactly equal to the functions in equation (2.33)

at Rx, but they take a slightly different form at large R. We approximate their large-R behavior

as the following,

f̂ ′(φi=0)(R)
R>>1−−−−→ c11χ

+′

0 (R) + c12χ
−′
0 (R) (2.37)

ĝ′(φi=0)(R)
R>>1−−−−→ c21χ

+′

0 (R) + c22χ
−′
0 (R). (2.38)

Substituting these wave functions into equation (2.32a) leads to an equation for tanφ′i that depends

on the product δR2L−3 at large R,

tanφ′i
R>>1−−−−→

c11W
(
χ+

0 (R), χ+′

0 (R)
)

+ c12W
(
χ+

0 (R), χ−
′

0 (R)
)

c21W
(
χ+

0 (R), χ+′
0 (R)

)
+ c22W

(
χ+

0 (R), χ−
′

0 (R)
) (2.39a)

=
c114δR2L−3 − c12(2L+ 1)

c214δR2L−3 − c22(2L+ 1)
(2.39b)

R→∞−−−−→ c11

c21
for L > 1 and δ 6= 0. (2.39c)

For L > 1, the large-R limit of this equation for tanφ′i approaches the wrong value c11/c21 if δ

is non-zero. Performing the actual numerical calculation of tanφ′i also produces this same wrong

value c11/c21.

Since the value of tanφi depends on the constants c12 and c22 and because the terms of

equation (2.39b) that contain c12 and c22 are dominated by numerical error at large R when L > 1,

we deduce that finding the contribution to f̂(φi=0)(R) and ĝ(φi=0)(R) from χ−0 (R) at large R is
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numerically challenging when L > 1. In fact, letting either f̂(R) or ĝ(R) — at zero energy —

coincide with any wave function that has a contribution from χ+
0 (R) leads to an equation for tanφi

that depends on the constants c12 and c22, and the same numerical instability exists. However,

if we instead let f̂(R) or ĝ(R) coincide with χ−0 (R) at zero energy, using the numerical wave

functions f̂ ′(φi=0)(R) and ĝ′(φi=0)(R) at large R leads to an equation for tanφ′i that reduces to the

analytic value of tanφi for all L.

For example, by letting ĝ(R) coincide with χ−0 (R) at zero energy, we derive an expression

for tanφi. Substituting the exact expressions for f̂(φi=0)(R) and ĝ(φi=0)(R) into equation (2.32b)

yields the following equation for tanφi,

tanφi = −
c21W

(
χ−0 (R), χ+

0 (R)
)

+ c22W
(
χ−0 (R), χ−0 (R)

)
c11W

(
χ−0 (R), χ+

0 (R)
)

+ c12W
(
χ−0 (R), χ−0 (R)

) = −c21

c11
. (2.40)

Using the numerical wave functions f̂ ′(φi=0)(R) and ĝ′(φi=0)(R) at large R leads to the following

equations for tanφ′i,

tanφ′i = −
c21W

(
χ−0 (R), χ+′

0 (R)
)

+ c22W
(
χ−0 (R), χ−

′

0 (R)
)

c11W
(
χ−0 (R), χ+′

0 (R)
)

+ c12W
(
χ−0 (R), χ−

′
0 (R)

) (2.41a)

R>>1−−−−→ −c21 + c22δ

c11 + c12δ
(2.41b)

≈ −c21

c11
for all L and δ << 1. (2.41c)

Here, tanφ′i does not depend on R in the region R >> 1, and tanφ′i approaches the approximately

correct value −c21/c11 even if the numerical error is finite. Of course an accurate value of tanφ′i

requires the numerical error to be small (c22δ << c21 and c12δ << c11), but the divergence seen in

equation (2.39b) does not appear. In this case, tanφi does not depend on the constants c12 and

c22. Therefore, finding the contribution to f̂(φ=0)(R) and ĝ(φ=0)(R) from χ−0 (R) at large R is not

necessary, and the numerical instability of calculating tanφi vanishes.
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Figure 2.4: This graph shows the QDT parameter G (red dots) as a function of tanφi. The
vertical lines represent the value of tanφi when f̂(R) asymptotically coincides with χ+

0 (R) at zero
energy (blue dashed line) and when ĝ(R) asymptotically coincides with χ−0 (R) at zero energy (green
solid line). For this calculation, V lr = −C6/R

6−C8/R
8−C10/R

10, where the dispersion coefficients
are appropriate for K + Rb; Ei ≈ 6.547×10−4, which corresponds to 100 nK; L = 0; and Rx = 0.1.
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2.5 Calculating QDT parameters

Having specified φi in equation (2.11), the values of the QDT parameters A, η, G, and γ

unambiguously follow from the set of equations (2.17). Of particular importance is the parameter G.

The zero-energy limit of G,

G = − W (g(R), ĝ(R))

W
(
g(R), f̂(R)

)∣∣∣∣∣
R→∞

Ei→0−−−→ −
W
(
χ−0 (R), ĝ(R)

)
W
(
χ−0 (R), f̂(R)

)∣∣∣∣∣
R→∞

, (2.42)

is intimately related to the value of φi in equation (2.32b). Clearly, if φi = 0 in equation (2.42),

the zero-energy limit of G is the exact same value as tanφi in equation (2.32b). Section 2.4.1

shows that evaluating equation (2.32b) is stable independent of the phase φi given to the reference

wave functions. Therefore, the zero-energy limit of G is numerically stable. Figure 2.4 shows the

calculation of G at 100 nK as a function of the zero-energy phase φi.

For a given Rx, figure 2.4 shows that there is a unique value of φi (indicated by the green

vertical solid line) for which G vanishes at zero energy. This value of φi corresponds with letting

ĝ(R) asymptotically coincide with χ−0 (R) at zero energy; therefore, the condition G = 0 at zero

energy defines our standardization. As evident from equations (2.15) and (2.13), the vanishing

of G guarantees the maximal linear independence of f̂(R) and ĝ(R) at long range. Hence, although

a different standardization could guarantee that the zero-energy limit of G is well behaved (e.g.,

the blue vertical dashed line in figure 2.4), our standardization is the only choice that leads to

maximally linearly independent reference wave functions at long range in the limit of zero energy.
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(a) L = 0 (b) L = 1

(c) L = 2 (d) L = 3

(e) L = 4 (f) L = 5

Figure 2.5: Each panel of this figure shows the QDT parameters A (red solid curve), G (blue dashed
curve), η (green dotted curve), and γ (cyan dashed-dotted curve) for the realistic KRb model
potential V lr(R) = −C6/R

6 − C8/R
8 − C10/R

10. The panels (a – f) plot the QDT parameters for
the partial waves L = 0 − 5, respectively. The horizontal axis of each graph is

√
|Ei|, where we

merely use the absolute value of Ei in order to plot γ and the positive energy parameters together.
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Applying our standardization, figure 2.5 illustrates the energy dependence of the various

QDT parameters for the realistic KRb model potential V lr(R) = −C6/R
6 − C8/R

8 − C10/R
10,

where the dispersion coefficients are the same as in section 2.4. This graph uses the quantity
√
|Ei|

on the horizontal axis. We merely use the absolute value of Ei in order to plot γ and the positive

energy parameters together. We present the QDT parameters in natural van der Waals units, where

β = (2µC6/~2)1/4 = 143.9 a0 and Eβ = 152.7 µK. Each panel represents the result for a different

partial wave L. Note that a greater energy range is shown for higher L. In all cases, the calculation

is numerically stable, even in the threshold limit. These functions are smooth; therefore, they are

easy to interpolate. In contrast to reference [37], our QDT parameters are weak functions of energy

for all L. Using these parameters, one can efficiently characterize high-L Fano-Feshbach resonances

and shape resonances in collisions of K + Rb.

One striking feature, unique to our parameterization, is that all of the QDT parameters

vanish as powers of Ei in the limit Ei → 0. In this threshold limit, the QDT parameters are

well approximated by simple analytic formulas. For alkali atoms, where −C8/R
8 and −C10/R

10

make small corrections to −C6/R
6, we derive these formulas using the potential −C6/R

6 alone.

We provide a detailed derivation of these formulas in section 2.6, and we summarize the results

below. The analytic formulas for the threshold behavior of the QDT parameters are conveniently

parameterized in terms of a set of generalized, standard scattering lengths āL,

āL =

(
π2−(2L+3/2)

Γ(L/2 + 5/4)Γ(L+ 1/2)

)2/(2L+1)

, (2.43)

where Γ(x) is the gamma function [58]. Here, we give the threshold behavior of all four QDT
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parameters,

A1/2 k→0−−−→ −(āLk)L+1/2 (2.44a)

η
k→0−−−→ (−1)L+1(āLk)2L+1 +

3πΓ(L− 3/2)

32Γ(L+ 7/2)
k4 (2.44b)

G k→0−−−→ (−1)L+1(āLk)4L+2 − k2

(2L+ 3)(2L− 1)
(2.44c)

γ
κ→0−−−→


ā0κ for L = 0

κ2

(2L+3)(2L−1) for L > 0.

(2.44d)

These formulas agree well with the numerical results for the exact long-range potential when Ei . 1.

Analytic equations for standard scattering lengths, such as equation (2.43), have been derived

before in the literature. For example, ā0, which is the scattering length of our reference wave

function f̂(R), coincides with the semiclassical scattering length of Gribakin and Flambaum for

the potential −C6/R
6 [60]. Likewise, using an exact solution that was expressed using continued

fractions [61–63], Gao performed a similar analytic treatment of the near-threshold QDT parameters

for the potential −C6/R
6. To do so, he identified a set of standard constants āsL,Gao that are

related to our equation (2.43) via āsL,Gao = (āL)2L+1. While the treatments are equivalent, our

parameters āL have units of length. Moreover, our standard and universal reference wave functions

have a universal form for the corresponding phase shift in equation (2.44b).

Gao conceives of a hierarchy of reference wave functions distinguished by a short-range quan-

tum defect parameter µc [44]. Our implementation of QDT introduces alternative short-range

phases φi in equation (2.11). Our particular choice for φi gives our reference wave function f̂(R)

a particular set of scattering lengths āL. Using equation (10) of reference [63] and the zero-energy

limit of equation (33) of reference [63], our choice corresponds to,

µc = 1/2 + L/4. (2.45)

Equation (2.45) gives an explicit connection between the analytic formulas of Gao and our formu-

lation of QDT for the potential −C6/R
6.
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Moreover, a similar formulation of QDT in reference [47] derives the threshold behavior of

three positive energy parameters for a reference potential with an arbitrary scattering length a.

These parameters are easily related to our QDT parameters for the special case of L = 0. Expressed

in our notation, the results of reference [47] read,

η(L=0)
k→0−−−→ −ak (2.46)

A(L=0)
k→0−−−→ ā0k

(
1 + (a/ā0 − 1)2

)
(2.47)

G(L=0)
k→0−−−→ 1− a/ā0. (2.48)

If a = ā0 here, these formulas are consistent with the threshold behavior of our set of QDT

parameters in equation (2.44).

Although section 2.6 explicitly derives the QDT parameter threshold behavior for only the

potential −1/R6, this analysis implies simple extensions of equation (2.44) for any potential with

the form −1/Rn, where n is an integer and n > 2. The zero-energy solution χ−0 (R) is well defined

(and known analytically) for any potential of this kind,

χ−0 (R) =
√
RJν

(
R−(2L+1)/2ν

(2L+ 1)/2ν

)
R→∞−−−−→∝ R−L, (2.49)

where ν = (2L+1)/(n−2). Hence, for any potential that is asymptotically dominated by −Cn/Rn

and for all L, our standardization uniquely specifies the zero-energy limit of f̂(R) and ĝ(R), and

the analysis of section 2.6 is repeatable. As a consequence of our standardization of QDT, all of

the QDT parameters go to zero in the limit Ei → 0, and the reference wave functions f̂(R) and

ĝ(R) have a maximal linear independence at zero energy — even for this more general potential.

2.6 Threshold Behavior of the QDT parameters

The QDT parameters A, η, G, and γ connect the reference wave functions f̂(R) and ĝ(R) to

well-known solutions in the limit R→∞, as described in section 2.3. By considering a simple long-

range potential, we can represent the zero-energy limit of f̂(R) and ĝ(R) in terms of analytically

known zero-energy solutions. However, these zero-energy solutions are inadequate to describe the
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large-R behavior of f̂(R) and ĝ(R) at non-zero energies. When the energy is small, we derive

accurate corrections to the zero-energy wave functions via perturbation theory, and we use this

accurate representation of f̂(R) and ĝ(R) at small energies to derive simple expressions for the

threshold behavior of the QDT parameters. We accomplish this by matching the perturbative

expressions for f̂(R) and ĝ(R) near zero energy to the energy-dependent wave functions f(R) and

g(R) (above threshold) or to the function e−κR (below threshold).

2.6.1 Zero-Energy Solutions

For the simple long-range potential−C6/R
6, the radial Schrödinger equation has the following

form,

−d2ψ(R)

dR2
+
L(L+ 1)ψ(R)

R2
− ψ(R)

R6
= Eψ(R). (2.50)

We can analytically solve this equation at E = 0. Here, the internuclear separation R is in units of

the natural length scale β = (2µC6/~2)1/4 of the potential −C6/R
6, and the energy E is in units

of the natural energy scale Eβ = ~2/2µβ2, where µ is the reduced mass. We describe particular

solutions to equation (2.50) at zero energy in terms of two linearly independent solutions χ+
0 (R)

and χ−0 (R),

χ+
0 (R) =

√
RJ− 1

4
(2L+1)(1/2R

2)
R→∞−−−−→ 2L+1/2RL+1

Γ(3/4− L/2)
(2.51a)

χ−0 (R) =
√
RJ 1

4
(2L+1)(1/2R

2)
R→∞−−−−→ 2−(L+1/2)R−L

Γ(L/2 + 5/4)
, (2.51b)

where Jν(x) is the Bessel function of the first kind.

For all energies, we define two linearly independent reference wave functions f̂(R) and ĝ(R)

with the following boundary conditions at Rx << 1,

f̂(R) =
1√
k(R)

sin(

∫ R

Rx

k(R′)dR′ + φ) at R = Rx (2.52a)

ĝ(R) = − 1√
k(R)

cos(

∫ R

Rx

k(R′)dR′ + φ) at R = Rx. (2.52b)

Here, φ is a phase that is constant in R and energy, and k(R) =
√
E + 1/R6. The set of equa-

tions (2.52) and their full radial derivatives define f̂(R) and ĝ(R).
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We demand that ĝ(R) coincides (up to a normalization) with the solution χ−0 (R) at zero

energy. Hence, we write f̂(R) and ĝ(R) in terms of χ+
0 (R) and χ−0 (R) at zero energy by defining

two constants of normalization N1 and N2 and a constant phase α,

f̂(R,E = 0) = N2

(
χ+

0 (R) + tanαχ−0 (R)
)

(2.53a)

ĝ(R,E = 0) = N1χ
−
0 (R). (2.53b)

By considering the small-R limit of our zero-energy solutions and reference wave functions,

χ+
0 (R)

R<<1−−−−→ 2√
π
R3/2 sin

(
− 1

2R2
− Lπ

4
+

5π

8

)
(2.54a)

χ−0 (R)
R<<1−−−−→ − 2√

π
R3/2 cos

(
− 1

2R2
+
Lπ

4
− 5π

8

)
(2.54b)

f̂(R,E = 0)
R<<1−−−−→ R3/2 sin

(
− 1

2R2
+

1

2R2
x

+ φ

)
(2.54c)

ĝ(R,E = 0)
R<<1−−−−→ −R3/2 cos

(
− 1

2R2
+

1

2R2
x

+ φ

)
, (2.54d)

we use the sets of equations (2.52) and (2.53) to determine the four unknown constants,

N1 =

√
π

2
(2.55a)

φ = − 1

2R2
x

+
Lπ

4
− 5π

8
(2.55b)

tanα = (−1)L+1 sin

(
2L+ 1

4
π

)
(2.55c)

N2 = −
√
π

2 sin
(

2L+1
4 π

) . (2.55d)

2.6.2 Perturbation Theory

At zero energy, we have exact expressions for the wave functions f̂(R) and ĝ(R); however, it

is not immediately obvious whether or not the zero-energy wave functions are good approximations

at large R >> 1 and small energy E << 1. At small energy, both f̂(R) and ĝ(R) grow with R

before reaching their asymptotic limits, but only f̂(R) grows at exactly zero energy. Since f̂(R)

has a contribution from χ+
0 (R) and χ−0 (R) at zero energy, matching f̂(R) to finite-energy wave
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functions is straightforward. However, ĝ(R) only has a contribution from χ−0 (R) at zero energy,

and the contribution to ĝ(R) from χ+
0 (R) at small energy is unknown. In order to match our

zero-energy wave functions onto growing, finite-energy wave functions at large R, we must find the

contribution to ĝ(R) from χ+
0 (R). This is accomplished by performing a perturbation in E.

Because we plan to match wave functions at finite R, we choose a Green’s function which

preserves the boundary conditions of ĝ(R) at Rx [64],

G(R,R′) =


0 if R < R′

χ+
0 (R)χ−0 (R′)−χ−0 (R)χ+

0 (R′)
(N1N2)−1 if R > R′.

(2.56)

Hence, there is an integral equation for ĝ(R) at small energy,

ĝ(R,E << 1) =ĝ(R,E = 0) + E

∫ R

0
G(R,R′)ĝ(R′, E = 0)dR′ (2.57a)

=N1χ
−
0 (R) + EN2

1N2χ
+
0 (R)

∫ R

0
(χ−0 (R′))2dR′

− EN2
1N2χ

−
0 (R)

∫ R

0
χ+

0 (R′)χ−0 (R′)dR′, (2.57b)

where we have used equation (2.53b) to replace ĝ(R) at zero energy. We analytically solve these

integrals and expand them in powers of R at large R,∫ R

0
(χ−0 (R′))2dR′

R>>1−−−−→ 4

(2L+ 3)(2L− 1)π
− 2−(2L+1)R1−2L

(2L− 1)Γ(5/4 + L/2)2
(2.58a)∫ R

0
χ−0 (R′)χ+

0 (R′)dR′
R>>1−−−−→

4 cos
(

2L+1
4 π

)
(2L+ 3)(2L− 1)π

+
2 sin

(
2L+1

4 π
)
R2

(2L+ 1)π
. (2.58b)

By using this correction to the zero-energy ĝ(R) and by approximating f̂(R) with its zero-energy

limit, we have complete descriptions of the reference wave functions at large R and small energy,

f̂(R)
R>>1−−−−→
E<<1

N2

(
2L+1/2RL+1

Γ(3/4− L/2)
+ tanα

2−(L+1/2)R−L

Γ(5/4 + L/2)

)
(2.59a)

ĝ(R)
R>>1−−−−→
E<<1

N1
2−(L+1/2)R−L

Γ(5/4 + L/2)

+ EN2
1N2

(
2L+5/2RL+1

Γ(3/4− L/2)(2L+ 3)(2L− 1)π
−

2−L+1/2 sin
(

2L+1
4 π

)
R−L+2

Γ(5/4 + L/2)(2L− 1)π

)

− EN2
1N2

(
2−L+3/2 cos(2L+1

4 π)R−L

Γ(5/4 + L/2)(2L+ 3)(2L− 1)π

)
. (2.59b)
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2.6.3 Matching Wave Functions

The QDT parameters connect f̂(R) and ĝ(R) with f(R), g(R), and e−κR. Since we have

analytic expressions for all of these wave functions at large R and small energy, we use the definitions

of the QDT parameters in section 2.3 to solve for their threshold behavior. Moreover, by expanding

these wave functions in powers of R and comparing like terms, we derive simple formulas. We can

use the asymptotic expansions of f̂(R) and ĝ(R) at small energy in equations (2.59a) and (2.59b),

but we still need to find similar expansions of f(R) and g(R) in this same parameter regime:

R >> 1 and E << 1.

At large R, we write f(R) and g(R) in terms of spherical Bessel functions using equa-

tions (2.14) and (2.13),

f(R)
R→∞−−−−→ kR√

k
(j(kR) cos η − n(kR) sin η) (2.60a)

g(R)
R→∞−−−−→ kR√

k
(n(kR) cos η + j(kR) sin η) . (2.60b)

The small-argument expansions of the spherical Bessel functions unveil the behavior of f(R) and

g(R) at large R and small energy such that kR << 1,

f(R)
R>>1−−−−→
kR<<1

1√
k

(kR)L+1

(2L+ 1)!!
cos η +

1√
k

(2L− 1)!!

(kR)L
sin η (2.61a)

g(R)
R>>1−−−−→
kR<<1

− 1√
k

(2L− 1)!!

(kR)L
cos η

(
1 +

(kR)2

4L− 2

)
+

1√
k

(kR)L+1

(2L+ 1)!!
sin η, (2.61b)

where k =
√
E. We see that f(R) has a term proportional to RL+1 and a term proportional

to R−L. Hence, we compare this function with f̂(R) term by term. The equation for f(R) in

equation (2.15),

A−1/2f(R) = f̂(R), (2.62)

leads to equations for the QDT parameters A and η,

A1/2 =
Γ(3/4− L/2)kL+1/2 cos η

N22L+1/2(2L+ 1)!!
(2.63a)

sin η =
N2 tanα2−(L+1/2)A1/2kL+1/2

Γ(L/2 + 5/4)(2L− 1)!!
, (2.63b)
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where matching powers of RL+1 leads to equation (2.63a) and matching powers of R−L leads to

equation (2.63b).

From equation (2.63) we find that tan η ∝ k2L+1. Thus, for small k, we use the small-angle

approximation, sin η ≈ η and cos η ≈ 1, and we define the generalized scattering length āL,

āL =

(
π2−(2L+3/2)

Γ(L/2 + 5/4)Γ(L+ 1/2)

)2/(2L+1)

. (2.64)

We then rewrite our expressions for A and η in terms of āL,

A1/2 = −(āLk)L+1/2 (2.65a)

η = (−1)L+1(āLk)2L+1. (2.65b)

Here, we have used the relations (2n−1)!! = 2nΓ(1/2+n)/
√
π, where n is an integer, and sin (πz) =

π/Γ(1 − z)Γ(z) with z = (2L + 1)/4. For L > 1 and small k, we know that the phase shift is

dominated by a long-range phase shift proportional to k4 [65], but the derivation above only yields

the short-range contribution to the phase shift because we are matching wave functions under the

centrifugal barrier. Since we know the long-range contribution analytically, we simply correct our

expression for η by adding these contributions together,

η = (−1)L+1(āLk)2L+1 +
3πΓ(L− 3/2)

32Γ(L+ 7/2)
k4. (2.66)

The length scale āL helps to greatly reduce the amount of unnecessary constants in the

derivation of the remaining QDT parameters G and γ. Hence, we write our wave functions in terms

of āL. At large R, the zero-energy solutions become,

χ+
0 (R)

R>>1−−−−→ − 1

N2

√
āL

(R/āL)L+1

(2L+ 1)!!
(2.67a)

χ−0 (R)
R>>1−−−−→ 1

N1

√
āL

(2L− 1)!!

(R/āL)L
, (2.67b)
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and we have simple expressions for f̂(R) and ĝ(R) at large R and small energy,

f̂(R)
R>>1−−−−→
E<<1

−
√
āL

(R/āL)L+1

(2L+ 1)!!
+ (−1)L

√
āL

(2L− 1)!!

(R/āL)L
(2.68a)

ĝ(R)
R>>1−−−−→
E<<1

√
āL

(2L− 1)!!

(R/āL)L

(
1 +

ER2

4L− 2
+

(−1)LE

(2L+ 3)(2L− 1)

)
− E

(2L+ 3)(2L− 1)

√
āL

(R/āL)L+1

(2L+ 1)!!
. (2.68b)

We derive the threshold behavior of the QDT parameter G by using the equation for g(R) in

equation (2.15),

A1/2g(R) = ĝ(R) + Gf̂(R). (2.69)

In this equation, we substitute ĝ(R) and g(R) with their expansions in equations (2.68b) and

(2.61b), respectively, and we replace A by its threshold value in equation (2.65a). Thus, in the

limit of large R and small, positive energy such that kR << 1, we separately evaluate the left hand

side and right hand side of equation (2.69),

A1/2g(R)
R>>1−−−−→
kR<<1

√
āL

(2L− 1)!!

(R/āL)L

(
1 +

(kR)2

4L− 2

)
+ (−1)L(āLk)4L+2√āL

(R/āL)L+1

(2L+ 1)!!
(2.70a)

ĝ(R) + Gf̂(R)
R>>1−−−−→
kR<<1

√
āL

(2L− 1)!!

(R/āL)L

(
1 +

(kR)2

4L− 2
+

(−1)Lk2

(2L+ 3)(2L− 1)
+ (−1)LG

)
−
√
āL

(R/āL)L+1

(2L+ 1)!!

(
k2

(2L+ 3)(2L− 1)
+ G

)
, (2.70b)

where E = k2. Hence, the first two terms on the left hand side exactly cancel the first two terms

on the right hand side, leading to the following equation,

(−1)L(āLk)4L+2 (R/āL)L+1

(2L+ 1)!!
=− (R/āL)L+1

(2L+ 1)!!

(
k2

(2L+ 3)(2L− 1)
+ G

)
+ (−1)L

(2L− 1)!!

(R/āL)L

(
k2

(2L+ 3)(2L− 1)
+ G

)
. (2.71)

At large R >> 1, the terms proportional to RL+1 on the right hand side dominate the terms

proportional to R−L for all L and all k, independent of G; therefore, neglecting the terms of

order R−L in this equation gives the threshold behavior of G,

G = (−1)L+1(āLk)4L+2 − k2

(2L+ 3)(2L− 1)
. (2.72)



49

We derive the threshold behavior of γ in a way that is similar to the derivation of G. Here,

instead of matching to g(R), we match the small-energy limit of f̂(R) and ĝ(R) to the function e−κR

at large R. We again try to match wave functions at large R and small energy such that κR << 1.

Using equation (2.16), we define a constant of proportionality D,

tan γif̂i(R) + ĝi(R)
R>>1−−−−→ De−κiR. (2.73)

Using equation (2.68) for f̂(R) and ĝ(R) and using the expansion of e−κR in the limit κR << 1,

we arrive at the following equation,

D

∞∑
n=0

(−κR)n

n!
= −
√
āL

(R/āL)L+1

(2L+ 1)!!

(
− κ2

(2L+ 3)(2L− 1)
+ tan γ

)
+
√
āL

(2L− 1)!!

(R/āL)L

(
1− (κR)2

4L− 2
− (−1)Lκ2

(2L+ 3)(2L− 1)
+ (−1)L tan γ

)
, (2.74)

where E = −κ2.

For L = 0, we take the expansion of e−κR out to first order in κ (n = 1), and we neglect

terms of order κ2,

D(1− κR) =
√
ā0 (1 + tan γ − tan γR/ā0) . (2.75)

Matching constant terms and terms of order R leads to the following two equations with two

unknowns,

D =
√
ā0 (1 + tan γ) (2.76a)

−Dκ = − tan γ/
√
ā0. (2.76b)

Hence,

D =
tan γ√
ā0κ

(2.76c)

tan γ =
1

1− ā0κ
, (2.76d)

and we have a simple formula for tan γ in the threshold limit κ << 1 when L = 0,

tan γ = ā0κ for L = 0. (2.77)
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For L > 0, we immediately see that matching powers of R in equation (2.74) is problematic

due to the terms of order R−L on the right hand side. Therefore, instead of matching in the limit

κR << 1, we simply let the wave functions take their asymptotic forms as R→∞, where κR >> 1

even though κ << 1. That is, e−κR → 0, and f̂(R) and ĝ(R) are still well approximated by

their expressions in equation (2.68). At large R >> 1, these wave functions are dominated by

their contributions from RL+1. Even the contribution to ĝ(R) from R−L+2 is dominated by the

contribution from RL+1 for L > 0, and equation (2.73) takes the simple form below,

0 = −
√
āL

(R/āL)L+1

(2L+ 1)!!

(
− κ2

(2L+ 3)(2L− 1)
+ tan γ

)
. (2.78)

Hence, we have the following simple formulas for the threshold behavior of γ,

γ =


ā0κ for L = 0

κ2

(2L+3)(2L−1) for L > 0.

(2.79)

2.7 Summary

We have identified a choice of reference wave functions that allows QDT to describe high-

partial-wave cold collisions. Our specific standardization of reference wave functions has produced

a numerically stable calculation of high-partial-wave QDT parameters that are smooth in energy

and magnetic field. Simple power laws describe all of these parameters at ultracold energies, and

we have derived accurate expressions for these parameters in the threshold regime for potentials

dominated by −C6/R
6 at long range.



Chapter 3

Perturbative Multichannel Quantum Defect Theory

3.1 Introduction

Previous applications of MQDT successfully describe atomic collisions [29,34], including colli-

sions of high orbital angular momentum L [54]. These studies mostly neglect long-range anisotropic

interactions, as they are usually ignored within MQDT. However, it should be straightforward to

perturbatively include them, along the lines formulated in references [37,66–68], for instance. Some

studies utilize a distorted wave approximation to, for example, include coupling between energeti-

cally open channels [37], include non-adiabatic coupling to distant closed channels [69], or describe

laser assisted photoassociation [70]. Since a Fano-Feshbach resonance (FR) occurs when the colli-

sion energy is nearly degenerate with a bound molecular state, the resonance positions can strongly

depend on energetically closed scattering channels and their coupling to either other closed or open

channels. Hence, we develop a distorted wave approximation that treats all channels on an equal

footing.

For the perturbative MQDT calculation, we have the same goal as in chapter 2. We seek

to accurately compute scattering observables in terms of quantities that are weakly dependent on

energy and applied fields. In chapter 2, we accomplished this goal by writing the potential V (R)

in two parts beyond Rm, and we use that same form of the potential in this chapter. Beyond Rm,

Vij(R) = V lr
i (R) + V ′ij(R). (3.1)

In chapter 2, we let V ′(R) = 0 beyond Rm, and we accurately represented the asymptotic am-
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plitude and phase of M (0)(R) of equation (2.10) in terms of the energy-smooth and field-smooth

quantities Ksr and the QDT parameters. In this chapter, we consider the case when V ′(R) is not

negligible beyond Rm, and we do not set it equal to zero. In this case, M (0)(R) is not an exact

solution to equation (2.2) beyond Rm. Therefore, unlike chapter 2, Ksr and the QDT parameters

do not contain all of the information needed to compute scattering observables. We instead deter-

mine scattering observables in the full potential V (R) via perturbation theory, where V ′(R) is the

perturbing potential.

One could formulate a perturbation theory in terms of a perturbation on the standard,

physical scattering matrix Sphys, which represents physical energy-normalized wave functions. This

method has proven to be an accurate way to account for some perturbative long-range effects, as

in reference [37], for example. However, the resonant structure of Sphys is difficult to handle in

perturbation theory. In particular, the influence of the closed channel elements of the perturbing

potential can significantly shift the positions of scattering resonances. These shifts can easily

amount to large changes in Sphys that are not perturbative.

Instead, we directly perturb Ksr to most accurately account for the influence of V ′(R) be-

yond Rm, including the shifts in resonance positions. We expect such a perturbation to be more

accurate than directly perturbing Sphys because a small shift in Ksr can represent a large change

in Sphys. One can see from the set of equations (2.30) that Ksr
QQ + cot γ determines the positions

of poles in Sphys, which correspond to the positions of FRs, and a small change in Ksr can shift

the position of those resonances. As we demonstrate in section 4.4, the closed channel elements of

the perturbation V ′(R) can shift the positions of FRs well beyond the widths of those resonances,

amounting to a large change in Sphys.

Moreover, directly perturbing Ksr allows us to maintain the numerical efficiency of MQDT.

Just as Ksr gains its weak dependence on energy and field because it represents the WKB-like

normalized wave function matrix M(R) at Rm, we demand that the perturbed short-range K-

matrix Ksr′ also represents a WKB-like normalized wave function. Below, we derive an approx-

imation to the perturbed scattering matrix Sphys′ in terms of Ksr′ and other quantities that are
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weakly dependent on energy and field. To avoid confusion with chapter 2, we mark the reused

symbols for B, C, N , all constant K-matrices, and the physical S-matrix with a prime to denote

the “perturbed” version.

3.2 The Green’s Function Method

Unlike in chapter 2, we cannot accurately describe the long-range physics by solving equa-

tion (2.9) when V ′(R) 6= 0. Instead, we use the Green’s function method to propagate M(R) from

its boundary conditions at Rm to R ≥ Rm. Since we know the exact behavior of M(R) at Rm

(M(R) = M (0)(R) at Rm), we choose a channel-dependent outward-propagating Green’s function

that preserves the value of a solution and its derivative at Rm [64],

G
(+)
i (R,R′) =


0 if R < R′

f̂i(R)ĝi(R
′)− ĝi(R)f̂i(R

′) if R > R′.

(3.2)

The Green’s function G(+)(R,R′) solves the following differential equation in the region Rm ≤ R <

∞, (
− d2

dR2
+
Li(Li + 1)

R2
+ V lr

i (R)− Ei
)
G

(+)
i (R,R′) = δ(R−R′). (3.3)

An integral equation describes M(R) beyond Rm,

Mij(R) = M
(0)
ij (R)−

∫ ∞
Rm

G
(+)
i (R,R′)

N∑
k

V ′ik(R
′)Mkj(R

′)dR′. (3.4)

Using the expression for G(+)(R,R′) in equation (3.2) and the expression for M (0)(R) in

equation (2.10), we explicitly rewrite equation (3.4) in terms of the reference wave functions f̂(R)

and ĝ(R) and their radially dependent coefficients,

Mij(R) =f̂i(R)δij − ĝi(R)Ksr
ij

− f̂i(R)

∫ R

Rm

ĝi(R
′)

N∑
k

V ′ik(R
′)Mkj(R

′)dR′

+ ĝi(R)

∫ R

Rm

f̂i(R
′)

N∑
k

V ′ik(R
′)Mkj(R

′)dR′. (3.5)
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Taking the full first radial derivative of this equation, we have the following expression for the

derivative of M(R),

dMij(R)

dR
=

df̂i(R)

dR
δij −

dĝi(R)

dR
Ksr
ij

− df̂i(R)

dR

∫ R

Rm

ĝi(R
′)

N∑
k

V ′ik(R
′)Mkj(R

′)dR′

+
dĝi(R)

dR

∫ R

Rm

f̂i(R
′)

N∑
k

V ′ik(R
′)Mkj(R

′)dR′. (3.6)

Note that equations (3.5) and (3.6) have the same form, except that the reference wave func-

tions outside of the integrals in equation (3.5) are replaced by their derivatives in equation (3.6).

Therefore, if a wave function has a similar integral representation in the rest of this chapter, we

simply write an equation for the wave function as a short-handed notation that represents the wave

function and its derivative in the analogous form.

Because the reference wave functions f̂(R) and ĝ(R) are solutions to equation (2.9) and

because M(R) is a set of solutions to equation (2.2), M(R) is not a constant linear combination

of reference wave functions in the region R ≥ Rm when V ′(R) 6= 0. Although M (0)(R) may

approximately represent M(R) beyond Rm when V ′(R) is small, this representation cannot be

exact. In the full potential V (R), the reference wave functions f̂(R) and ĝ(R) and the two radially

dependent matrices I(R) and J(R) exactly represent M(R) beyond Rm,

Mij(R) = f̂i(R)Iij(R)− ĝi(R)Jij(R). (3.7)

Coefficients of this type are familiar in the variable phase formulation of scattering [71]. From

equations (3.5) and (3.6), we deduce integral equations for I(R) and J(R),

Iij(R) =δij −
∫ R

Rm

ĝi(R
′)

N∑
k

V ′ik(R
′)Mkj(R

′)dR′ (3.8a)

Jij(R) =Ksr
ij −

∫ R

Rm

f̂i(R
′)

N∑
k

V ′ik(R
′)Mkj(R

′)dR′. (3.8b)

In scattering theory, it is not the separate matrices I(R) and J(R) that are of particular

importance. Rather, it is their ratio K(R) = J(R)I(R)−1 that determines scattering observables.
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In terms of K(R), M(R) takes the following form,

M(R) =
(
f̂(R)− ĝ(R)K(R)

)
I(R). (3.9)

Using the derivatives of I(R) and J(R) in the set of equations (3.8), we derive a differential equation

for K(R) in the region R ≥ Rm,

dK(R)

dR
=

dJ(R)

dR
I(R)−1 + J(R)

d(I−1(R))

dR
(3.10a)

=
dJ(R)

dR
I−1(R)−K(R)

dI(R)

dR
I−1(R) (3.10b)

=−
(
f̂(R)− ĝ(R)K(R)

)T
V ′(R)

(
f̂(R)− ĝ(R)K(R)

)
. (3.10c)

Integrating equation (3.10c) gives an integral equation for K(R) in the region R ≥ Rm,

K(R) = Ksr −
∫ R

Rm

(
f̂(R′)− ĝ(R′)K(R′)

)T
V ′(R′)

(
f̂(R′)− ĝ(R′)K(R′)

)
dR′. (3.11)

Hence, the quantity K(R) is best understood as a radially dependent short-range K-matrix, and

we consider Ksr to be a boundary condition on K(R) at Rm. Equations (3.5) and (3.11) are exact,

and they form the starting point for perturbation theory.

3.3 The Distorted Wave Approximation

In this section, we use the distorted wave approximation to derive an approximate expression

for the perturbed physical scattering matrix Sphys′ . Just as the unperturbed scattering matrix only

depends on Ksr and the QDT parameters, which can be easily interpolated over a wide range of

energy and applied fields, we aim to write Sphys′ in terms of a perturbed short-range K-matrix and

other quantities that weakly depend on energy and field.

3.3.1 The Near Zone

The most straightforward way to derive an expression for Sphys′ in terms of a short-range K-

matrix is to use equation (3.11) to propagate K(R) through the entire range of the potential V ′(R)

and write Sphys′ in terms of the asymptotic value of K(R). We can simply obtain the distorted
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wave approximation for K(R) in the region R ≥ Rm by replacing K(R′) inside the integral on the

right hand side of equation (3.11) by Ksr,

K(R) ≈Ksr −
∫ R

Rm

(
f̂(R′)− ĝ(R′)Ksr

)T
V ′(R′)

(
f̂(R′)− ĝ(R′)Ksr

)
dR′. (3.12)

Because K(R) is equal to Ksr at R ≥ Rm when V ′(R) = 0, equation (3.12) is a standard first-

order distorted wave approximation. This approximation for K(R) is equivalent to approximating

f̂(R′)− ĝ(R′)K(R′) inside the integral on the right hand side of equation (3.11) by M (0)(R′). More

compactly, we write this approximation to K(R) in terms of M (0)(R′),

K(R) ≈ Ksr −
∫ R

Rm

M (0)T (R′)V ′(R′)M (0)(R′)dR′. (3.13)

However, the approximation to K(R) in equation (3.13) exponentially diverges in the limit

R → ∞. This divergence occurs because, for a general Ksr, M (0)(R) exponentially diverges in

the classically forbidden region of the asymptotically closed channels. Such a divergence produces

a correction to Ksr that does not converge in the limit R → ∞ and quickly becomes too big to

be considered perturbative in any sense. Note that the integral on the right hand side of equa-

tion (3.13) is divergent for any closed-channel perturbation that decays as a power of R beyond Rm,

independent of the magnitude of the perturbation.

Therefore, we only use equation (3.13), as written, to propagate K(R) in the short-range

region where all channels remain locally open. This region is located between the matching ra-

dius Rm and the smallest outer classical turning point Rti of any asymptotically closed channel i.

We order these turning points from 1 to Nc according to their increasing magnitude, making Rt1

the smallest one. Hence, we use equation (3.13) to write the approximate value of K(R) at Rt1 ,

K(Rt1) ≈ Ksr −
∫ Rt1

Rm

M (0)T (R′)V ′(R′)M (0)(R′)dR′. (3.14)

3.3.2 The Danger Zone

To account for the influence of V ′(R) beyond Rt1 in terms of quantities that weakly depend on

energy and applied fields, we devise a alternative perturbation theory that does not involve integrals
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over exponentially divergent wave functions, while simultaneously casting this perturbation in terms

of a perturbed short-range K-matrix Ksr′ . We accomplish this by finding the particular linear

combination of f̂(R) and ĝ(R) that represents F̂ (R) in the region R ≥ Rt1 . Analogous to F̂ (0)(R)

of chapter 2, the columns of F̂ (R) represent a set of solutions to equation (2.2) that vanish at the

origin in all channels and also asymptotically vanish in the closed channels. We construct F̂ (R)

by taking linear combinations of the columns of M(R) via the transformation F̂ (R) = M(R)B′,

where B′ plays the same role as B of chapter 2.

Unlike M (0)(R) of chapter 2, the wave function matrix M(R) is not a constant linear com-

bination of reference wave functions beyond Rt1 when V ′(R) 6= 0. Therefore, we must perform

the transformation F̂ (R) = M(R)B′ at a specific location in the region R ≥ Rt1 , and we call this

location the elimination radius Re. Analogous to the transformation F̂ (0)(R) = M (0)(R)B of chap-

ter 2.3, the transformation F̂ (R) = M(R)B′ needs to enforce asymptotically vanishing boundary

conditions on the closed channels of F̂ (R), even though V ′(R) may influence the behavior of F̂ (R)

beyond Re. Hence, we set the closed-channel elements of V ′(R) to zero beyond Re, eliminating the

closed channels from the scattering problem. This allows the linear combination of reference wave

functions that represents the closed channels of F̂ (R) at Re to accurately represent their asymp-

totic behavior as well. We represent the closed channels of F̂ (R) by the Nc × No matrix F̂Q(R),

and we enforce asymptotically vanishing boundary conditions on the closed channels of F̂ (R) by

demanding that F̂Q(R) is proportional to χ−Q(R) at Re. Therefore, the discussion that follows is

similar to chapter 2, except that we use perturbed wave functions to accommodate V ′(R).

In order to represent F̂ (R) at Re in terms of quantities that weakly depend on energy and

field, we write F̂ (R) at Re as a linear combination of f̂(R) and ĝ(R) in each channel. We represent

the open channels of F̂ (R) by the No × No matrix F̂P(R), and we demand that F̂P(R) has the

following form at Re,

F̂P(R) = f̂P(R)− ĝP(R)K̃ ′ at R = Re. (3.15)

This equation defines the No × No matrix K̃ ′. In the closed channels, we demand that F̂Q(R) is
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proportional to χ−Q(R) at Re,

F̂Q(R) =
(
f̂Q(R) + ĝQ(R) cot γ

)
C ′ at R = Re (3.16a)

=χ−Q(R) csc γC ′ at R = Re. (3.16b)

This equation defines the Nc ×No matrix C ′. Even though the set of equations (3.16) defines C ′

at Re, this linear combination of f̂(R) and ĝ(R) represents F̂Q(R) at R ≥ Re because we have set

all closed-channel elements of V ′(R) to zero beyond Re. Equations (3.15) and (3.16) have the same

form as equations (2.20) and (2.21) of chapter 2, except that the perturbed constants C ′ and K̃ ′

replace C and K̃.

Because the set of equations (3.15) and (3.16) define C ′ and K̃ ′ at Re, we must determine

the behavior of F̂ (R) at Re in order to solve for C ′ and K̃ ′. The transformation F̂ (R) = M(R)B′

describes the behavior of F̂ (R) in terms of M(R), and we know the exact boundary conditions

of M(R) at Rm. Hence, we can determine the behavior of F̂ (R) at Re by using the Green’s

function method of section 3.2 to propagate M(R) in the region Rm ≤ R ≤ Re. In fact, since we

can use the approximation to K(Rt1) in equation (3.14), we only need to propagate M(R) in the

region Rt1 ≤ R ≤ Re in order to solve for C ′ and K̃ ′.

Similar to the propagation of K(R) beyond Rt1 , using equation (3.5) to propagate M(R)

from Rt1 to Re leads to an approximate representation of F̂ (R) at Re in terms of integrals that

exponentially diverge with increasing Re. In order to devise a perturbation theory that avoids these

divergences, we demonstrate the nature of the divergence we encounter when using equation (3.5).

Explicitly writing equation (3.5) in terms of I(Rt1) and J(Rt1) produces the following equation,

M(R) =f̂(R)I(Rt1)− ĝ(R)J(Rt1)

− f̂(R)

∫ R

Rt1

ĝ(R′)V ′(R′)M(R′)dR′

+ ĝ(R)

∫ R

Rt1

f̂(R′)V ′(R′)M(R′)dR′. (3.17)

We make the standard distorted wave approximation by replacing M(R′) inside the integrals on

the right hand side of equation (3.17) by f̂(R′)I(Rt1) − ĝ(R′)J(Rt1). Because I(R′) and J(R′)
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are not constant functions of R′, the resulting equation for M(R) is only approximately correct.

Plugging this approximation for M(R) into the transformation F̂ (R) = M(R)B′ at Re produces

the following approximate representation of F̂ (R) at Re,

F̂ (R) ≈
(
f̂(R)I(Rt1)− ĝ(R)J(Rt1)

)
B′

− f̂(R)

∫ Re

Rt1

ĝ(R′)V ′(R′)
(
f̂(R′)I(Rt1)− ĝ(R′)J(Rt1)

)
B′dR′

+ ĝ(R)

∫ Re

Rt1

f̂(R′)V ′(R′)
(
f̂(R′)I(Rt1)− ĝ(R′)J(Rt1)

)
B′dR′ at R = Re, (3.18)

where we bring the constant B′ inside the integrals over R′.

Setting F̂ (R) in equation (3.18) equal to F̂ (R) in the set of equations (3.15 - 3.16) produces

a set of equations for B′, C ′ and K̃ ′. At Re, the transformation F̂ (R) = M(R)B′ has the following

form,

F̂ (R) =
(
f̂(R)I(Re)− ĝ(R)J(Re)

)
B′ at R = Re. (3.19)

Hence, equation (3.16) demands that the closed channels of
(
f̂(R)I(Re)− ĝ(R)J(Re)

)
B′ are pro-

portional to χ−Q(R). However, the matrix
(
f̂(R′)I(Rt1)− ĝ(R′)J(Rt1)

)
B′ appears inside the inte-

grals on the right hand side of equation (3.18). Because I(Rt1) 6= I(Re) and J(Rt1) 6= J(Re)

when V ′(R) 6= 0, the closed channels of
(
f̂(R′)I(Rt1)− ĝ(R′)J(Rt1)

)
B′ are not proportional

to χ−Q(R′) and, therefore, exponentially diverge in the limit R′ → ∞. This causes the integrals

on the right hand side of equation (3.18) and, therefore, the quantities B′, C ′ and K̃ ′ to expo-

nentially diverge as Re increases. Because of this divergence, we devise an alternative method of

perturbation theory in the region Rt1 ≤ R ≤ Re.

To avoid exponentially divergent integrals, we take advantage of the fact that the represen-

tation of F̂ (R) in equation (3.19) vanishes in closed channels as Re increases. Using this property

of F̂ (R), we derive a distorted wave approximation for F̂ (R) that eliminates the divergences intro-

duced by M(R). Because we demand that the representation of F̂ (R) at Re vanishes as Re increases,

we introduce a channel-dependent inward-propagating Green’s function G(−)(R,R′) that preserves
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the value of a solution and its derivative at Re,

G
(−)
i (R,R′) =


f̂i(R)ĝi(R

′)− ĝi(R)f̂i(R
′) if R < R′

0 if R > R′,

(3.20)

which is similar to the outward-propagating Green’s function G(+)(R,R′) in equation (3.2).

Using G(−)(R,R′) instead of G(+)(R,R′) leads to the following integral equation for M(R),

M(R) =f̂(R)I(Re)− ĝ(R)J(Re)

− f̂(R)

∫ R

Re

ĝ(R′)V ′(R′)M(R′)dR′

+ ĝ(R)

∫ R

Re

f̂(R′)V ′(R′)M(R′)dR′. (3.21)

We use equation (3.21) to propagate M(R) from its boundary conditions at Re (which we don’t

know) to Rt1 ≤ Re. We make the standard distorted wave approximation by replacing M(R′)

inside the integral on the right hand side of equation (3.21) by f̂(R′)I(Re)− ĝ(R′)J(Re). Using the

transformation F̂ (R) = M(R)B′ at Re produces the following approximate representation of F̂ (R)

at Re,

F̂ (R) ≈
(
f̂(R)I(Rt1)− ĝ(R)J(Rt1)

)
B′

− f̂(R)

∫ Re

Rt1

ĝ(R′)V ′(R′)
(
f̂(R′)I(Re)− ĝ(R′)J(Re)

)
B′dR′

+ ĝ(R)

∫ Re

Rt1

f̂(R′)V ′(R′)
(
f̂(R′)I(Re)− ĝ(R′)J(Re)

)
B′dR′ at R = Re, (3.22)

where we bring the constant B′ inside the integrals over R′ and reverse the order of the limits of

integration from their order in equation (3.21). Unlike equation (3.18), which involves integrals over

the quantity
(
f̂(R′)I(Rt1)− ĝ(R′)J(Rt1)

)
B′, equation (3.22) involves integrals over the quantity(

f̂(R′)I(Re)− ĝ(R′)J(Re)
)
B′. Since the closed channels of

(
f̂(R′)I(Re)− ĝ(R′)J(Re)

)
B′ expo-

nentially decay with increasing R′, they do not cause the integrals in equation (3.22) to diverge

as Re increases.

Although B′ eliminates the divergent behavior of the matrix f̂(R′)I(Re)− ĝ(R′)J(Re), which

appears inside the integrals on the right hand side of equation (3.22), f̂(R′) and ĝ(R′) separately
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appear to the left of V ′(R′) in these integrals, and the closed channels of these reference wave

functions exponentially diverge as well. However, appendix A uses equation (3.22) to derive an

approximate set of equations for B′, C ′, and K̃ ′, and this set of equations shows that K̃ ′ only

depends on asymptotically convergent integrals to first order in V ′(R). Because we derive all

scattering observables from K̃ ′, we neglect the exponentially divergent integrals that lead to second

order contributions to K̃ ′.

Appendix A further approximates the behavior of F̂ (R) at Re in order to approximately

express this behavior in terms of a symmetric, perturbed short-range K-matrix Ksr′ that weakly

depends on energy and applied fields. We define Ksr′ to be the value of K(R) at Re,

Ksr′ = K(Re) = J(Re)I(Re)
−1. (3.23)

In terms of Ksr′ , F̂ (R) takes the following form at Re,

F̂ (R) =
(
f̂(R)− ĝ(R)Ksr′

)
I(Re)B

′ at R = Re. (3.24)

To derive K̃ ′ in terms of Ksr′ , we match two different representations of F̂ (R) together at Re.

For this matching, we set the representation of F̂ (R) in equations (3.15) and (3.16) equal to the

representation of F̂ (R) in equation (3.24). Because these representations of F̂ (R) have the same

form as the representations of F̂ (0)(R) in equations (2.20), (2.21), and (2.22), K̃ ′ has the same form

as K̃ in equation (2.25b), except that we replace Ksr by its perturbed version Ksr′ ,

K̃ ′ = Ksr′
PP −Ksr′

PQ(Ksr′
QQ + cot γ)−1Ksr′

QP. (3.25)

This equation defines the essential relationship between K̃ ′ and Ksr′ . Even though the quantity

Ksr′ and the QDT parameter γ are both weakly dependent on energy and field, they simply

describe the resonant behavior of K̃ ′ through the matrix inverse in equation (3.25). The roots of

det
(
Ksr′

QQ + cot γ
)

approximately determine the positions of resonances.

Appendix A approximates Ksr′ by deriving expressions for I(Re) and J(Re) that produce an

approximate representation of F̂ (R) at Re. Equation (A.24) of appendix A writes this approxi-

mation to Ksr′ in terms of Ksr and the modified wave function matrix M̃ (0)(R). We rewrite this
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equation below,

Ksr′ ≈ K(Rt1)−
∫ Re

Rt1

M̃ (0)T (R′)V ′(R′)M̃ (0)(R′)dR′, (3.26)

where equation (A.23) of appendix A defines M̃ (0)(R). We rewrite this equation below,

M̃ (0)(R) =

 f̂P(R)− ĝP(R)Ksr
PP −ĝP(R)Ksr

PQ

−χ−Q(R) cos γKsr
QP χ−Q(R)

(
sin γ − cos γKsr

QQ

)
 . (3.27)

Equation (3.27) shows that M̃ (0)(R) is proportional to χ−Q(R) in the closed channels. There-

fore, the closed channels of M̃ (0)(R) exponentially vanish in the limit R → ∞, and the integral

in equation (3.26) converges with increasing Re, producing a finite expression for Ksr′ in the limit

Re → ∞. Equation (3.27) also shows that we can easily construct M̃ (0)(R) from M (0)(R) by

replacing ĝQ(R) with χ−Q(R) cos γ and by replacing f̂Q(R) with χ−Q(R) sin γ.

Substituting the approximation for K(Rt1) in equation (3.14) into equation (3.26) produces

the following approximation for Ksr′ ,

Ksr′ ≈Ksr −
∫ Rt1

Rm

M (0)T (R′)V ′(R′)M (0)(R′)dR′ −
∫ Re

Rt1

M̃ (0)T (R′)V ′(R′)M̃ (0)(R′)dR′. (3.28)

This approximation for Ksr′ is equivalent to approximating K(R) at Re by replacing the quan-

tity f̂(R′) − ĝ(R′)K(R′) inside the integral on the right hand side of equation (3.11) by M (0)(R′)

in the region Rm ≤ R ≤ Rt1 and by the modified wave function matrix M̃ (0)(R′) in the region

Rt1 ≤ R ≤ Re. We do not expect this approximation for Ksr′ to be numerically close to the ap-

proximation for K(Re) implied by equation (3.13) because equation (3.13) is a poor approximation

beyond Rt1 .

We use equation (3.28) to approximate Ksr′ in the example problem of section 4.4, producing

accurate scattering observables. In the example problem of section 4.4, which considers low-partial-

wave collisions between alkali atoms, all of the outer turning points of the closed channels are close

together. Other scattering problems, however, may have closed-channel turning points that are

separated by a large distance. In particular, scattering problems with high partial waves or ro-

vibrational excitations may benefit from an alternative approximation.
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To account for such scattering problems, we develop a simple modification to the approxima-

tion for Ksr′ in equation (3.26) that may achieve a higher accuracy. In this alternative approxima-

tion, we divide the region Rt1 ≤ R ≤ Re into segments separated by the successive closed channel

turning points. We enumerate these segments by the index α, which runs from 1 to Nc − 1. We

define each segment α to be the region Rtα ≤ R ≤ Rtα+1 .

In this alternative method, we evolve K(R) by approximating f̂(R′) − ĝ(R′)K(R′) inside

the integral on the right hand side of equation (3.11) by a different version of M̃ (0)(R′) in each

segment of the region Rt1 ≤ R ≤ Re. Similar to the construction of M̃ (0)(R) from M (0)(R),

we construct M̃
(0)
α (R) from M (0)(R) by replacing ĝi(R) with χ−i (R) cos γi and by replacing f̂i(R)

with χ−i (R) sin γi. However, we only make these replacements in the asymptotically closed chan-

nels i that are also locally closed in segment α of this region. Hence, Ksr′ takes the following

form,

Ksr′ =Ksr −
∫ Rt1

Rm

M (0)TV ′M (0)dR′ −
Nc−1∑
α=1

∫ Rtα+1

Rtα

M̃ (0)T
α V ′M̃ (0)

α dR′ −
∫ Re

RtNc

M̃ (0)TV ′M̃ (0)dR′.

(3.29)

Conveniently, the closed-channel reference wave functions that are exponentially divergent

beyond their outer classical turning points do not appear in the integral from Rt1 to Re in equa-

tion (3.28) or equation (3.29). Hence, we can choose Re anywhere in the region R ≥ Rt1 without

introducing integrals over exponentially divergent wave functions in the closed channels. However,

open channels that are near threshold and have a centrifugal barrier play an important role in

ultracold collisions. When such a channel exists, the open channels of the WKB-like normalized

matrix M̃ (0)(R) experience a rapid power-law growth under the centrifugal barrier. Similar to the

propagation of K(R) beyond Rt1 , the rapid growth of M̃ (0)(R) in the classically forbidden region

under a centrifugal barrier leads to an approximation to Ksr′ that quickly becomes too large to

be considered perturbative in any sense, unless the perturbation V ′(R) is exactly zero in these

channels. Therefore, we do not take the limit Re → ∞, even though Ksr′ does converge in this

limit.
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Instead, we must carefully choose the location Re for each scattering problem. Ideally, we can

increase Re well beyond Rt1 and obtain a clear convergence in the closed channels of Ksr′ before the

open-channel elements of Ksr′ grow out of control. This allows the matrix inverse of Ksr′
QQ +cot γ to

describe the strongly resonant behavior of Sphys′ , analogous to how the matrix inverse of Ksr
QQ+cot γ

describes the resonant behavior of Sphys in the set of equations (2.30). Maintaining this structure

creates a maximally accurate perturbation on the position of resonances in terms of quantities that

weakly depend on energy and field. We strive to increase Re until we fully account for the influence

of the closed-channel elements of V ′(R), keeping in mind that a smaller value of Re may be required

for certain problems, and we neglect the closed-channel elements of V ′(R) beyond Re.

In general, the outer classical turning point of a closed channel i has a value Rti . 1.

Beyond Rti , the decaying amplitude of χ−i (R) in the classically forbidden region of channel i quickly

diminishes the effect of V ′ij(R) on the approximation for Ksr′ in equation (3.28), where j is any

channel. The open channel wave functions, however, have a significant amplitude well beyond the

outer classical turning points of the closed channels. Hence, Re creates a clear separation between

our treatment of the short-range physics and our treatment of the long-range physics. The choice

of Re = 1 is appropriate in this sense. In fact, we find that the choice of Re = 1 achieves an

accurate approximation to scattering observables in the example problem of section 4.4.

3.3.3 The Far Zone

By performing the transformation F̂ (R) = M(R)B′ at Re and by neglecting the closed-

channel elements of V ′(R) beyond Re, we have effectively removed the closed channels from the

scattering problem for R > Re. Beyond Re, we devise a perturbation theory that accurately

accounts for the influence of the open-channel elements of V ′(R), while simultaneously maintaining

the simple form of MQDT. Here, we derive an expression for Sphys′ in terms of a perturbed energy-

normalized K-matrix K ′. We also write K ′ in terms of quantities that are weakly dependent on

energy and field.

The matrix K ′ represents the asymptotic amplitude and phase of the wave function ma-
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trix F (R). Similar to F̂ (R), F (R) vanishes at the origin in all channels and asymptotically van-

ishes in the closed channels. However, unlike F̂ (R), F (R) is also energy-normalized. The energy-

normalization of F (R) forces the amplitude of F (R) to remain fixed in the limit R → ∞, and

tunneling through the classically forbidden region under a centrifugal barrier causes the amplitude

of F (R) to shrink. Therefore, unlike the approximation for Ksr′ in equation (3.28), which de-

pends on the WKB-like normalized matrix M̃(R), a perturbation theory for K ′ that depends on an

energy-normalized wave function can remain perturbative, even when a large classically forbidden

region exists in an open channel. Performing perturbation theory in terms of energy-normalized

wave functions is natural from the point of view of Born-approximation treatments of scattering.

In order to obtain the energy-normalization of F (R), we write the open channels of F (R) in

terms of the energy-normalized reference wave functions f(R) and g(R). We represent the open

channels of F (R) by the No ×No matrix FP(R),

FP(R) = fP(R)− gP(R)Z(R). (3.30)

This equation defines the No × No matrix Z(R). Here, we demand that the coefficient in front

of fP(R) is equal to theNo×No identity matrix, forcing FP(R) to have the same energy-normalization

as fP(R).

We find the equation of motion for Z(R) by substituting the exact expression for M(R) in

equation (3.5), which uses the outward propagating Green’s function G(+)(R,R′), into the trans-

formation F̂ (R) = M(R)B′. Explicitly writing the open channels of this equation in terms of K̃ ′

and neglecting the closed-channel elements of V ′(R) beyond Re produces the following equation

for F̂P(R) in the region R ≥ Re,

F̂P(R) =f̂P(R)− ĝP(R)K̃ ′ − f̂P(R)

∫ R

Re

ĝP(R′)V ′PP(R′)F̂P(R′)dR′

+ ĝP(R)

∫ R

Re

f̂P(R′)V ′PP(R′)F̂P(R′)dR′. (3.31)

We then invert the relationship between the set of reference wave functions f̂(R) and ĝ(R) and the

set of reference wave functions f(R) and g(R) in equation (2.15), and we rewrite equation (3.31)
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in terms of f(R) and g(R). This produces the following equation for F̂P(R) in the region R ≥ Re,

F̂P(R) =fP(R)A−1/2
(
I + GK̃ ′

)
− gP(R)A1/2K̃ ′ − fP(R)

∫ R

Re

gP(R′)V ′PP(R′)F̂P(R′)dR′

+ gP(R)

∫ R

Re

fP(R′)V ′PP(R′)F̂P(R′)dR′, (3.32)

where we find the relationship f̂(R)ĝ(R′)− ĝ(R)f̂(R′) = f(R)g(R′)− g(R)f(R′) to be useful.

Equation (3.32) expresses F̂P(R) in terms of the reference wave functions f(R) and g(R)

and their radially dependent coefficients. This equation is exactly analogous to equation (3.5),

which expresses M(R) in terms of the reference wave functions f̂(R) and ĝ(R) and their radially

dependent coefficients. Hence, by following the same steps as in equations (3.5 - 3.11), we derive

the following integral equation for Z(R) in the region R ≥ Re,

Z(R) =Z(Re)−
∫ R

Re

(
fP(R′)− Z(R′)gP(R′)

)
V ′PP(R′)

(
fP(R′)− gP(R′)Z(R′)

)
dR′. (3.33)

Following a now familiar pattern, we perform a distorted wave approximation by simply replac-

ing Z(R) inside the integral on the right hand side of this equation by Z(Re),

Z(R) ≈ Z(Re)−
∫ R

Re

(
fP(R′)− Z(Re)gP(R′)

)
V ′PP(R′)

(
fP(R′)− gP(R′)Z(Re)

)
dR′. (3.34)

Note that, because the open-channel wave functions are oscillatory at long range, this integral

converges as R→∞ for any potential that vanishes faster than 1/R.

We determine the boundary conditions on Z(R) at Re by performing the transformation

F (R) = F̂ (R)N ′ at Re. In order to solve for Z(Re), we use equation (3.32) to write the behavior

of F̂P(R) at Re in terms of f(R) and g(R),

F̂P(R) = fP(R)A−1/2
(
I + GK̃ ′

)
− gP(R)A1/2K̃ ′. (3.35)

Substituting this expression for F̂P(R) and the expression for FP(R) in equation (3.30) into the

open channels of the transformation F (R) = F̂ (R)N ′, we equate the coefficients in front of f(R)

and g(R) on both sides of this equation and derive the following expressions for N ′ and Z(Re),

N ′ ≈
(
I + GK̃ ′

)−1
A1/2 (3.36a)

Z(Re) ≈A1/2K̃ ′
(
I + GK̃ ′

)−1
A1/2. (3.36b)
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These constants have the same form as N and K in the set of equations (2.27), except that K̃ is

replaced by K̃ ′.

Because Z(Re) depends on K̃ ′, which explicitly depends on the denominator Ksr′
QQ + cot γ

in equation (3.25), Z(Re) has poles as a function of energy or field at the locations of scattering

resonances. The change in Ksr′ inside this denominator is responsible for shifting the position of

resonances; therefore, Z(Re) depends strongly on V ′(R) in the region R ≤ Re. These resonances

are essential to produce accurate scattering observables, but there is one term in equation (3.34)

that has two factors of Z(Re), leading to large and unphysical corrections to K ′ near resonances.

To eliminate the second order effects of V ′(R) in the region R ≤ Re, we approximate the

evolution of Z(R) beyond Re by simply neglecting the term in equation (3.34) that is second-order

in Z(Re). Making this approximation, we propagate Z(R) to the limit R → ∞. The asymptotic

limit of Z(R) defines the perturbed energy-normalized K-matrix K ′,

K ′ ≈Z(Re)−
∫ ∞
Re

fP(R′)V ′PP(R′)fP(R′)dR′ +

∫ ∞
Re

fP(R′)V ′PP(R′)gP(R′)dR′Z(Re)

+ Z(Re)

∫ ∞
Re

gP(R′)V ′PP(R′)fP(R′)dR′, (3.37)

where we bring the constant Z(Re) outside of the integrals over R′. All of the integrals in equa-

tion (3.37) involve energy-normalized open-channel wave functions that smoothly vary with energy

and applied fields.

Finally, we obtain the perturbed physical scattering matrix Sphys′ by using the MQDT algebra

of equation (2.29) with K replaced by K ′,

Sphys′ = eiη
I + iK ′

I − iK ′
eiη. (3.38)

We have designed this equation to maximally incorporate the effect of the full potential V ′(R) be-

yond Rm within first-order perturbation theory. Simultaneously, we have expressed this equation

in terms of quantities that weakly depend on energy and field. Equation (3.38) for Sphys, equa-

tion (3.37) for K ′, equation (3.36b) for Z(Re), and equation (3.25) for K̃ ′ show that Sphys′ entirely

depends on Ksr′ , the QDT parameters, and the integrals in equation (3.37).
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In our implementation of this perturbation theory, we compute and interpolate Ksr′ of equa-

tion (3.28). We do not interpolate K ′. Rather, we interpolate the set of integrals in equation (3.37).

For clarity, we rewrite the quantities that we interpolate below. Here, we rewrite equation (3.28),

Ksr′ =Ksr −
∫ Rt1

Rm

M (0)T (R′)V ′(R′)M (0)(R′)dR′ −
∫ Re

Rt1

M̃ (0)T (R′)V ′(R′)M̃ (0)(R′)dR′. (3.39)

In equation (3.37), the matrix
∫∞
Rm

gP(R′)V ′PP (R′)fP(R′)dR′ is simply the transpose of the ma-

trix
∫∞
Rm

fP(R′)V ′PP (R′)gP(R′)dR′. Therefore, we only numerically integrate the small set of inte-

grals
∫∞
Rm

fi(R
′)V ′ij(R

′)fj(R
′)dR′ and

∫∞
Rm

fi(R
′)V ′ij(R

′)gj(R
′)dR′, where i and j only run over the

set of open channels. We compute and interpolate these integrals and Ksr′ on a coarse grid in

energy and field.

We then use the interpolated values of these open-channel integrals, Ksr′ , and the QDT

parameters to compute Sphys′ according to the set of equations (3.25), (3.36b), (3.37), and (3.38)

by means of simple algebra. For clarity, we rewrite this set of equations below,

K̃ ′ ≈ Ksr′
PP −Ksr′

PQ(Ksr′
QQ + cot γ)−1Ksr′

QP (3.40a)

Z(Re) ≈ A1/2K̃ ′
(
I + GK̃ ′

)−1
A1/2 (3.40b)

K ′ ≈Z(Re)−
∫ ∞
Re

fP(R′)V ′PP(R′)

(
fP(R′)− gP(R′)Z(Re)

)
dR′

+ Z(Re)

∫ ∞
Re

gP(R′)V ′PP(R′)fP(R′)dR′ (3.40c)

Sphys′ = eiη
I + iK ′

I − iK ′
eiη. (3.40d)

3.4 Summary

We have extended MQDT to perturbatively incorporate long-range anisotropic interactions.

Using the Green’s function method, we derived a differential equation for a radially dependent

K-matrix, denoted K(R), that fully described the interchannel coupling over the entire range of R.
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When the perturbation involved closed channels, we found that the solution to this differential

equation exponentially diverged in the region Rt1 ≤ R ≤ Re. Using the distorted wave approxi-

mation, we found an approximation for K(R) that asymptotically converged. We constructed this

approximation in terms of quantities that were weakly dependent on energy and field, allowing for

an efficient calculation of all scattering observables. In chapter 4, we demonstrate that this exten-

sion of MQDT is necessary to retain sub-G accuracy in the position of Fano-Feshbach resonances

in the scattering of potassium atoms with artificially enhanced magnetic dipole moments.



Chapter 4

Atomic Scattering

This chapter contains material in references [54] and [72].

4.1 Introduction

Ultracold atomic scattering often depends on many partial waves, rapidly increasing the

number of scattering channels (N >> 1) required to compute accurate scattering observables. In

alkali atoms, strong anisotropic interactions at short range couple many different partial waves

together, and high-partial-wave (high-L) resonances can greatly influence s-wave scattering. In

strongly magnetic atoms, these anisotropic couplings persist to long range, and scattering observ-

ables strongly depend on many partial waves. The full close-coupling (FCC) method, described

in chapter 2, produces numerically exact solutions to the coupled Schrödinger equations (2.2), but

this method tends to be quite slow. For example, even the relatively simple scattering of K and Rb

atoms, restricted to channels with L = 0 and L = 2, requires N ≈ 100 coupled hyperfine channels.

The computational time of the FCC method is proportional to N3 [57], and using it to characterize

resonant scattering observables requires long FCC calculations at every energy and field of interest.

This method is especially slow at describing high-L Fano-Feshbach resonances (FRs) because their

widths decrease quickly with increasing L.

In this chapter, we perform the challenging (yet numerically feasible) FCC calculations of

scattering observables, allowing us to test our formulation of MQDT. This method propagates the

log-derivative matrix Y (R) to very long range, where it approaches a constant. After this propa-
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gation, the asymptotic limit of Y (R) determines all scattering observables. The FCC calculation is

known to be quite accurate, and it is our standard with which to compare the accuracy of MQDT.

We demonstrate that the zeroth-order MQDT calculation of chapter 2 accurately reproduces the

FCC results for alkali-atom scattering, including high partial waves. We show that the elements

of Ksr are weakly dependent on magnetic field, and we perform the MQDT calculation by in-

terpolating Ksr on a coarse grid in magnetic field, greatly increasing the numerical efficiency of

calculating FRs. Using this enhanced efficiency, we quickly predict and characterize many FRs in

ultracold 40K + 85Rb and 133Li + 6Cs collisions.

We also use the perturbative MQDT calculation of chapter 3 to incorporate the effects of

a long-range dipole-dipole interaction within MQDT. As an example, we use the ultracold scat-

tering of 40K with an artificially enhanced dipole-dipole interaction. We deliberately increase the

magnitude of this interaction so that the zeroth-order MQDT calculation is no longer accurate.

By comparing with the FCC calculation, we show that the perturbative MQDT calculation can

adequately characterize the effects that the enhanced dipole-dipole interaction has on the posi-

tion and shape of a particular FR. This calculation is performed by interpolating the field-smooth

matrix Ksr′ over a coarse grid in magnetic field, retaining the numerical efficiency of MQDT.

4.2 Alkali Atoms

The simplicity of alkali-atom scattering allows for the construction of accurate scattering

models. Because each atom has a single valence electron, we describe the short-range interaction

between these atoms in terms of singlet and triplet Born-Oppenheimer potentials. Additionally, the

long-range potential between these atoms is approximately isotropic, and we can accurately describe

this potential in terms of isotropic dispersion coefficients. However, the exact form of the short-

range potentials is not precisely known a priori, and the positions of FRs are sensitive to the precise

scattering lengths of these potentials. The extensive experimental evidence of resonant scattering

features in these gases at ultracold temperatures helps to pin down the scattering lengths. Because

of these measurements, we can fine-tune our scattering model to accurately describe scattering



72

between alkali atoms near threshold.

In this section, we consider the collision of 40K + 87Rb in the lowest hyperfine states of

each atom |fK = 9/2,mfK = −9/2〉 and |fRb = 1,mfRb
= 1〉, where a number of FRs have been

observed [73, 74]. The quantum number f is the total electronic plus nuclear spin, and mf is

its projection onto the polarization axis of the magnetic field. Our scattering model adopts the

accurate, short-range molecular potentials X 1Σ+ and a 3Σ+ of reference [59] that were constructed

by performing a global fit to the position of several L = 0 FRs. For consistency, our model also

adopts the interaction parameters of reference [59] that describe the long-range forces. We describe

this long-range model below. The van der Waals parameters C6, C8, and C10 describe the long-range

dispersion forces. The electron-exchange interaction is,

Eex(R) = AexR
γexe−βexR, (4.1)

which is added to the triplet molecular state and subtracted from the singlet molecular state. The

magnetic dipole-dipole interaction is,

Vdd(R) = −α
2

2

(
3S2

z − S2
) (

1/R3 + aSOe
−bSO(R−RSO)

)
, (4.2)

where α is the fine structure constant. Reference [59] reports the values of the long-range interaction

parameters C6, C8, C10, Aex, βex, γex, aSO, bSO, and RSO.

This model allows us to calculate accurate scattering observables and predict unobserved

scattering features. We use this same model potential for both the FCC calculation and the MQDT

calculation, allowing us to directly compare the FCC and MQDT methods. The FCC calculation

considers the full Hamiltonian into the asymptotic region. The MQDT method only uses this full

Hamiltonian up to the matching radius Rm. Beyond Rm, the MQDT reference wave functions are

single-channel solutions in V lr(R). We make the following choice for V lr(R),

V lr(R) = −C6/R
6 − C8/R

8 − C10/R
10. (4.3)

This choice neglects Eex(R) and Vdd(R) beyond Rm. As a consequence, each channel only differs

by a constant energy set by its hyperfine quantum numbers and subsequent Zeeman shift.
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Despite neglecting these long-range forces, MQDT remains accurate. The electron-exchange

energy Eex(R) is vanishingly small beyond R ≈ 30 a0, and we can choose Rm beyond this location.

The dipole-dipole interaction Vdd(R) is very long range and creates a coupling between channels,

leading to a difference between the MQDT and FCC calculations. However, we find that Rm can

be increased until Vdd(R) makes a negligible contribution to the elastic cross section. We choose

Rm = 45 a0. This allows for excellent agreement between the two calculations. In applications where

weak longer-range couplings must be included, we can use the perturbative MQDT of chapter 3 to

include them.
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Magnetic Field (G)

Figure 4.1: The quantum defects µλ = tan δλ/π are shown for the collision of 40K + 87Rb over
the range B = 0− 1000 G with a collision energy of 1 µK. For this calculation we match Y (R) to
solutions in the long-range potential V lr = −C6/R

6 − C8/R
8 − C10/R

10 at Rm = 45 a0, including
channels with L = 0 and L = 2. The two graphs merely display two different ranges of µ over the
same range of B.
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If one chooses a matching radius Rm in the range Rm ≈ 35−50 a0 for alkali atoms, the QDT

parameters approximately describe all physics beyond Rm. Simultaneously, all channels are locally

open (or weakly closed) at Rm, and Ksr is typically a weak function of energy and field. Our choice

of Rm = 45 a0 leads to a smooth Ksr that is easy to interpolate over a large range of collision energy

and magnetic field. The eigenvalues of Ksr, labeled by λ, have the functional form tan δλ, where δλ

is the short-range eigenphase shift. We define the quantum defects to be µλ = tan δλ/π. Figure 4.1

shows these quantum defects as a function of magnetic field over the range B = 0− 1000 G.

With this same choice of Rm = 45 a0, a coarse magnetic field grid of spacing 100 G allows

for an accurate interpolation of Ksr, and MQDT accurately reproduces the six experimentally

measured FRs in L = 0− 2 states that were reported in reference [73]. Motivated by this accuracy

and the excellent agreement with the FCC calculation, we use MQDT to quickly re-fit the singlet

and triplet scattering lengths, producing our own accurate scattering model. Our fit includes the

six experimentally measured resonance positions reported in reference [73] and the L = 2 resonance

at 547.4(1) G, which was reported in reference [74] and recently confirmed by reference [75]. We list

the measurements that we include in this fit and their uncertainties in table 4.1 of the next section.

While retaining the value of C6 = 4.300× 103 in atomic units, varying the scattering lengths leads

to a minimum reduced chi-squared between the experimental resonance positions and the MQDT

resonance positions. We vary these scattering lengths by slightly modifying the back wall of the

singlet and triplet potentials. We find the optimal scattering lengths to be as = −110.8 a0 and

at = −214.5 a0 with χ2
red = 0.83.
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Figure 4.2: The elastic cross section for the collision of 40K + 87Rb with a collision energy of 1 µK
is shown for the FCC calculation (black dots), including channels with L = 0 and L = 2. The FCC
calculation is compared to the MQDT calculation (red curve) with Ksr interpolated over a range
of 1000 G. This curve is unchanged if we use the analytic formulas (2.44) instead of the numerical
values for A, η, and G.
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Using the re-tuned Hamiltonian, we perform the MQDT calculation of L = 0 − 2 FRs for

ultracold 40K + 87Rb collisions in their lowest hyperfine states. We demonstrate the accuracy of the

MQDT calculation by comparing it to the FCC calculation. For example, figure 4.2 demonstrates

the excellent agreement between the MQDT calculation and the FCC calculation of the elastic cross

section near a pair of overlapping resonances. The wider resonance is of s-wave character, and the

more narrow resonance is of d-wave character. By calculating Ksr on a magnetic field grid with a

field spacing of 100 G and by interpolating the elements of Ksr over the range B = 0 − 1000 G,

MQDT reproduces the FCC calculation with a small difference of . 1 mG in the resonance positions.

The next section discusses the ability of MQDT to reproduce experimentally measured FR positions

and predict unobserved FRs.

4.3 Fano-Feshbach Resonances

The accuracy and efficiency of MQDT allow for an extensive study of Fano-Feshbach reso-

nances (FRs) in ultracold alkali-atom scattering. Because Ksr and the QDT parameters weakly

depend on magnetic field, we can easily search for the location of FRs and characterize their shape.

From equation (2.25b), we see that the roots of det
(
Ksr

QQ + cot γ
)

determine quantitatively accu-

rate resonance positions [34], where both Ksr and γ are interpolated with ease. After interpolating

these quantities, the discovery of FRs only requires a magnetic field spacing that is finer than

the distance between any two resonances [76]. This method allows enough numerical efficiency to

ensure the discovery of all the FRs in a large range of magnetic field.
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Table 4.1: This table describes all of the Fano-Feshbach resonances in the range B = 0−1000 G for
the collision of 40K + 87Rb in the state |fK = 9/2,mfK = −9/2〉 |fRb = 1,mfRb

= 1〉 for a collision
energy of 1 µK. This table lists the MQDT calculation of resonance positions B0 and field widths ∆
with their associated partial-wave quantum number L. All magnetic field values are in units of G.
This table also lists the experimentally measured resonance positions Bex.

Bex B0 −∆ L Bex B0 −∆ L

- 96.06 1.5× 10−16 2 - 506.3 4.5× 10−6 2
- 108.7 2.3× 10−13 2 515.7(5) 515.1 0.50 1
- 124.3 3.1× 10−9 2 - 526.5 5.7× 10−5 1
- 143.9 2.6× 10−8 2 - 531.8 3.1× 10−5 1
- 155.9 1.9× 10−12 1 - 540.8 1.9× 10−6 1
- 168.1 2.7× 10−7 2 546.6(2) 546.6 3.1 0
- 171.9 1.1× 10−11 2 547.4(1) 547.3 6.3× 10−3 2
- 178.2 3.7× 10−6 1 - 558.5 9.6× 10−8 2
- 205.1 2.5× 10−9 1 - 568.9 4.0× 10−6 2
- 206.8 1.5× 10−5 0 - 590.1 1.9× 10−6 2
- 215.8 3.9× 10−9 2 - 592.9 3.1× 10−7 2
- 277.6 4.3× 10−6 2 - 621.8 0.13 1
- 320.3 5.3× 10−10 1 - 629.6 2.0× 10−5 1
- 356.8 9.5× 10−5 2 - 644.0 7.1× 10−9 1
- 393.3 5.1× 10−5 2 658.9(6) 658.9 0.80 0
- 403.2 1.2× 10−8 2 663.7(2) 663.8 5.5× 10−3 2
- 404.5 0.024 1 - 690.8 1.8× 10−6 2
- 412.2 2.2× 10−4 2 - 720.8 6.8× 10−11 2
- 421.9 3.6× 10−12 2 - 752.5 2.0× 10−6 1
- 429.4 2.4× 10−8 1 - 754.0 2.5× 10−14 2
- 444.0 1.8× 10−9 2 - 779.4 2.1× 10−5 1
- 455.8 3.9× 10−5 2 - 809.7 4.6× 10−12 1

456.1(2) 456.3 5.6× 10−3 1 - 823.2 1.9× 10−4 0
- 462.0 0.062 0 - 892.8 6.3× 10−10 2
- 466.3 2.5× 10−5 2 - 934.3 6.6× 10−9 2
- 473.1 6.7× 10−9 1 - 979.9 4.9× 10−11 2
- 479.9 2.3× 10−5 2
- 483.5 3.9× 10−8 2

495.6(5) 495.3 0.15 0
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4.3.1 K + Rb

In section 4.2, we described the scattering between 40K + 87Rb in their lowest hyperfine

states |fK = 9/2,mfK = −9/2〉 and |fRb = 1,mfRb
= 1〉, and we re-tuned the scattering model to

achieve an optimum accuracy. Here, even though some resonances can be extremely narrow, we

use MQDT to predict and describe all of the FRs between these states in the range 0 − 1000 G.

Table 4.1 lists these resonance positions and field widths.

As our model calculates all experimentally measured resonances close to their positions Bex,

the unmeasured resonance positions of table 4.1 are predictive with uncertainties on the order of

current experimental uncertainties (. 1 G). Once our theory predicts a resonance at the position B0,

we determine the width of an L = 0 or L = 2 resonance by fitting the divergence of the scattering

length a(B) near the resonance to the following form [73],

a(B) = abg

(
1− ∆

B −B0

)
, (4.4)

where abg is the constant local background scattering length and ∆ is the field width. To describe

resonances of L = 1 character, we fit the divergence of the scattering volume a3
1(B) near the

resonance to the following form,

a3
1(B) = a3

1,bg

(
1− ∆

B −B0

)
, (4.5)

where a3
1,bg is the constant local background scattering volume.

For high-L resonances beyond L = 2, the resonance widths in K + Rb collisions become

orders of magnitude more narrow. For example, MQDT predicts the widest of the L = 4 resonances

to have a field width . 1 µG. The time required to perform a FCC calculation of resonances this

narrow makes the comparison between the MQDT calculation and the FCC calculation challenging.

However, predicting the position and width of high-L resonances remains simple within MQDT.

Despite only performing a detailed, fully-coupled calculation on a magnetic field grid of spacing

100 G, our method has found and characterized features 18 orders of magnitude smaller than this.
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Table 4.2: This table reports the MQDT calculation of FRs in 6Li + 133Cs. For each resonance, this
table lists the incident spin state |fLi,mfLi

, fCs,mfCs
〉; the resonant state quantum numbers MF =

mfLi
+ mfCs

, L, and ML; the resonance location B0; the field width ∆; the local background
scattering length or scattering volume a2L+1

L,bg (B0) (in atomic units); and the inelastic field width Γ.
The collision energy is 1 µK in each case. All magnetic field values are in units of G. This table
also reports the experimentally measured resonance positions Bex, reported in reference [77].

Incident state MF L ML Bex B0 ∆ a2L+1
L,bg (B0) Γ

|1/2, 1/2, 3, 3〉 5/2 1 1 634.2 −1.39× 10−4 −6.89× 104 −
7/2 1 0 662.79(1) 662.9 −9.55× 100 −1.02× 105 −
7/2 1 1 663.04(1) 663.0 −9.56× 100 −1.02× 105 −
5/2 1 1 682.3 −3.98× 10−6 −1.52× 105 −
9/2 1 -1 690.6 −2.50× 10−5 −1.36× 105 −
7/2 1 0 713.63(2) 713.7 −5.92× 10−1 −1.23× 105 −
7/2 1 1 714.07(1) 714.0 −5.90× 10−1 −1.23× 105 −
5/2 1 1 737.6 −2.04× 10−9 −1.20× 105 −
7/2 0 0 843.5(4) 843.1 −6.56× 101 −2.64× 101 −
7/2 0 0 892.87(7) 892.9 −2.07× 100 −6.40× 101 −

|1/2,−1/2, 3, 3〉 3/2 1 1 632.5 −2.01× 10−6 −9.01× 104 −
5/2 1 0 658.21(5) 658.2 −1.67× 10−1 −8.42× 104 −
3/2 1 1 676.0 −9.57× 10−5 −7.46× 104 −
7/2 1 -1 687.4 − − −
5/2 1 0 708.63(1) 708.7 −9.32× 100 −1.03× 105 −
5/2 1 1 708.88(1) 708.9 −9.33× 100 −1.03× 105 −
3/2 1 1 728.8 −3.21× 10−6 −1.50× 105 −
7/2 1 -1 740.9 −1.54× 10−5 −1.31× 105 4.40× 10−1

5/2 1 0 764.23(1) 764.3 −5.69× 10−1 −1.21× 105 −
5/2 1 1 764.67(1) 764.6 −5.68× 10−1 −1.21× 105 −
5/2 0 0 816.24(2) 816.5 −2.37× 100 −4.30× 100 −
5/2 0 0 889.2(2) 888.9 −6.37× 101 −2.70× 101 −
5/2 0 0 943.26(3) 943.3 −2.03× 100 −6.10× 101 −

|1/2, 1/2, 3, 2〉 5/2 1 1 704.49(3) 704.5 −1.79× 101 −9.94× 104 1.70× 10−1

7/2 1 0 734.6 − − −
5/2 1 1 760.4 −6.03× 10−1 −1.33× 105 1.20× 101

9/2 1 -1 773.1 −1.65× 10−6 −1.32× 105 −
7/2 1 0 798.3 −1.89× 10−6 −1.22× 105 8.67× 10−1

5/2 1 1 824.7 −1.39× 10−3 −1.17× 105 7.87× 10−1

5/2 0 0 896.6(7) 896.2 −1.39× 102 −2.07× 101 7.23× 10−1

5/2 0 0 939.6 −2.00× 100 −9.08× 101 2.10× 101

5/2 0 0 1019.1 −1.30× 10−3 −5.03× 101 7.55× 10−1

|1/2,−1/2, 3, 2〉 3/2 1 1 694.8 −3.90× 10−1 −6.86× 104 −
5/2 1 0 728.5 − − −
3/2 1 1 750.06(6) 750.1 −1.75× 101 −1.00× 105 1.48× 10−1

7/2 1 -1 761.5 − − −
5/2 1 0 784.8 − − −
3/2 1 1 811.2 −5.68× 10−1 −1.30× 105 1.28× 101

7/2 1 -1 828.0 −2.27× 10−6 −1.28× 105 8.42× 10−1

5/2 1 0 853.85(1) 853.8 −1.33× 10−6 −1.20× 105 8.37× 10−1

3/2 0 0 854.3 1.43× 100 9.74× 100 −
3/2 0 0 943.5(1.1) 941.6 −1.33× 102 −2.17× 101 6.01× 10−1

3/2 0 0 989.9 −1.89× 100 −8.42× 101 2.12× 101
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4.3.2 Li + Cs

In this section, we further demonstrate the accuracy of MQDT and its predictive power

by characterizing a large set of s-wave FRs and p-wave FRs for a few different incident states of

ultracold 6Li + 133Cs scattering. We choose the set of incident states listed in table 4.2. For the

MQDT calculation, we choose Rm = 40 a0. This choice produces a Ksr that is smooth in energy

and field. The smoothness of Ksr is similar to the case of K + Rb, for which the eigenvalues of Ksr

were shown in figure 4.1.

We construct a scattering model using the long-range interactions described in section 4.2.

Here, we use the long-range interaction parameters of reference [78]. We also use the accurate,

short-range molecular potentials X 1Σ+ and a 3Σ+ of reference [78]. Similar to our treatment

of 40K + 87Rb, we slightly modify the back wall of these singlet and triplet molecular potentials

to optimally produce 19 of the experimentally measured FR positions reported in reference [77].

Table 4.2 reports these measured FR positions, along with the optimal MQDT prediction of these

resonance positions and their corresponding quantum numbers.

Reference [72] reports a detailed comparison between the MQDT method and the FCC

method, demonstrating their equivalent ability to describe these 19 experimentally measured FR

positions. MQDT obtains the root-mean-square deviation of δBrms = 0.040 G between the mea-

sured FR positions and those positions calculated by theory. The FCC calculation obtains δBrms =

0.039 G. Reference [72] also fully develops and applies three other methods of determining these

FR positions, obtaining δBrms = 0.048 G for the MQDT frame transformation method, δBrms =

0.263 G for the dressed asymptotic bound state method, and δBrms = 0.965 G for the bare asymp-

totic bound state method. Besides the FCC calculation, all of these calculations have a similar

computational expense, and MQDT performs the best.

Utilizing the efficiency and accuracy of MQDT, we search for all FRs in the range of magnetic

field 0− 1500 G for this same set of incident states. For brevity, we only describe p-wave FRs for a

single value of incident ML for each incident spin state, except when this doublet was experimentally
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resolved. We also describe how the theory extracts resonance widths. Within MQDT, finding and

identifying FRs is straightforward. Approximate FR locations are quickly determined by searching

for roots of det(Ksr
QQ+ cot γ), and the eigenstate of Ksr

QQ+ cot γ whose eigenvalue crosses zero near

an FR identifies the quantum numbers of the resonant state. Table 4.2 reports FRs in the range of

magnetic fieldB = 0−1500 G, labeled by their incident spin state |fLi,mfLi
, fCs,mfCs

〉 and resonant-

state quantum numbers MF = mfLi
+mfCs

, L, and ML. The quantum number ML of each incident

channel is easily inferred from table 4.2 by conservation of total angular momentum M inc
F +M inc

L =

M res
F +M res

L .

To characterize each FR in terms of a resonance position B0 and a field width ∆, we calculate

one of two quantities: the real part of the scattering length a1
0 or the real part of the scattering

volume a3
1. We refer to these two quantities simultaneously as a2L+1

L . The quantities a2L+1
L are

approximately independent of energy at ultralow energy,

a2L+1
L

k→0−−−→ − tan δL/k
2L+1, (4.6)

where the phase shift δL obeys the Wigner threshold laws δL
k→0−−−→∝ k2L+1. We numerically

determine that the simple threshold behavior of δL leads to an energy-independent field width ∆

for L = 0 and L = 1 resonances. We use MQDT to quickly generate a2L+1
L on a fine grid in

magnetic field at an incident collision energy of 1 µK, and we fit a2L+1
L (B) to one of three different

functional forms described below.
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(a) ∆ ≈ −0.167 G, and a31,bg(B) is constant.
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(b) ∆ ≈ −1.65 µG, and a31,bg(B) is linear.

Figure 4.3: These graphs show the L = 1 resonances near (a) 658.2 G and (b) 773.1 G. In each
graph, the red curve is the best-fit form of equation (4.7); the blue dots represent the MQDT
calculation of a3

1(B); and the black dashed line is the function a3
1,bg(B).
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Unlike the previous section, the incident states we explore in this section can lead to inelastic

scattering. For the majority of FRs in table 4.2, the resonant state is much more strongly coupled

to the incident scattering channel than to any inelastic (exoergic) channel, and a clear pole emerges

in a2L+1
L (B). In this case, a2L+1

L (B) takes the conventional form,

a2L+1
L (B) = a2L+1

L,bg (B)

(
1− ∆

B −B0

)
, (4.7)

where ∆ and B0 are constants. The quantity ∆ is the field width, and B0 is the resonance location.

When |∆| is relatively large (|∆| > 0.1 G), we let a2L+1
L,bg (B) be constant in B. This allows for an

excellent fit of a2L+1
L (B). When |∆| is relatively small (|∆| < 0.1 G), we let a2L+1

L,bg (B) be linear in B

to achieve an equivalent fit. Figures 4.3(a) and 4.3(b) demonstrate fits of resonances described by

equation (4.7) when |∆| > 0.1 G and |∆| < 0.1 G, respectively.
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Figure 4.4: This graph shows the L = 1 resonance near 760.4 G. The red curve is the best-fit form
of equation (4.8); the blue dots represent the MQDT calculation of a3

1(B); and the black dashed
line is the high order polynomial a3

1,bg(B). This fit excludes data around the narrow resonance
near 773.1 G.
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For several FRs in table 4.2, the resonant state is comparably coupled to both the incident

channel and an inelastic channel, and the variation of a2L+1
L (B) becomes less drastic than for pure

elastic scattering. In this case we fit a2L+1
L (B) to the following form [79],

a2L+1
L (B) = a2L+1

L,bg (B) +
α
(
2(B −B0)/Γ

)
+ β(

2(B −B0)/Γ
)2

+ 1
, (4.8)

where α, β, Γ, and B0 are constants. The quantity Γ is the inelastic field width. Since the

variation in a2L+1
L (B) near these FRs can be small, we fit these FRs by letting a2L+1

L,bg (B) be a high

order (order=9) polynomial in B. This high-order fit is appropriate as the coefficients decrease

by orders of magnitude with successive powers of B, and the best-fit a2L+1
L,bg (B) is not oscillatory

in the vicinity of B0. For example, figure 4.4 shows the best-fit scattering volume a3
1(B) near the

resonance at 760.4 G.

Table 4.2 summarizes the behavior of each FR in terms of the small set of parameters B0,

∆, a2L+1
L,bg (B0), and Γ. We use the parameter ∆ in order to directly compare all FRs, regardless of

their character. As fitting the FRs to the form of equation (4.8) does not determine ∆, we suggest

an approximate relation between ∆ and Γ. By comparing equations (4.8) and (4.7) in the limit

(B −B0)/Γ >> 1, we obtain the following approximate relation,

∆ ≈ − αΓ/2

a2L+1
L,bg (B0)

. (4.9)

Listing a value for Γ in table 4.2 indicates that this approximation has been used to determine ∆.

Five of the resonances whose locations are identified by MQDT do not exhibit an appreciable

variation in a2L+1
L with B. For these FRs, table 4.2 gives the predicted resonance location from the

root of det(Ksr
QQ+cot γ) but does not report a value of ∆. Our method has found FRs with a value

of ∆ as small as 10−9 G. Therefore, either the uncharacterized resonances are heavily suppressed

by inelastic scattering, or they are extremely narrow.

4.4 Magnetic Atoms

For the study of alkali-atom scattering in section 4.2, it is in fact a good assumption to neglect

the magnetic dipole-dipole interaction at long range. This holds because of the comparatively small
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magnetic dipole moment (µ = 1 µB) of these atoms. In alternative cases, such as erbium (µ = 7 µB)

or dysprosium (µ = 10 µB) this may no longer be the case, and the long-range dipolar interac-

tion may significantly impact the scattering, particularly near a Fano-Feshbach resonance (FR).

Additionally, dipolar molecules have strong anisotropic couplings at long range that are not negli-

gible. To account for these effects, we use the perturbative MQDT method of chapter 3. In this

section, we illustrate the efficiency and accuracy of the perturbative MQDT method by applying

this method to the ultracold scattering of potassium atoms with an artificially enhanced magnetic

dipole-dipole interaction.

To this end, we construct a simple model that accurately describes the ultracold scattering of

potassium atoms, and we artificially increase the magnitude of the dipole-dipole interaction Vdd(R).

For simplicity, we also neglect the second-order spin-orbit interaction in our model of potassium.

In this case, equation (4.10) takes the following form,

Vdd(R) = −ξ
2α2

2

(
3S2

z − S2
)
/R3, (4.10)

where we include the artificial enhancement factor ξ2. Note that this enhancement only changes

the strength of Vdd(R) and does not affect the threshold energies. By increasing the value of ξ, we

generate a magnetic dipole-dipole interaction with an artificially large strength. This strength is

comparable to the strength of the magnetic dipole-dipole interaction between two atoms with the

same magnetic dipole moment µ = ξ µB. For realistic alkali-atom collisions, we simply set ξ equal

to exactly one. We increase the value of ξ to simulate atomic scattering with dipole moments µ

as large as µ = 10 µB and beyond. The physical significance of ξ is most closely related to half

of the electronic gyromagnetic ratio gs in only this single term of the potential V (R). Below, we

demonstrate that the long-range dipole-dipole interaction can significantly shift FRs and that our

MQDT perturbation theory does an adequate job of tracking this shift on resonance.

Our model of potassium uses the molecular potential X 1Σ+ g of reference [80] and the

molecular potential a 3Σ+ u of reference [81] with corrections from references [82] and [83]. We

use the long-range dispersion coefficient C6 of reference [84] and the coefficients C8 and C10 of
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reference [85]. We include the partial waves L = 0 and L = 2. We adjust the singlet and triplet

scattering lengths to fit the measurement of binding energy vs. magnetic field near the s-wave

FR between the states |f = 9/2,mf = −7/2〉 and |f = 9/2,mf = −9/2〉, reported in reference [86].

The quantum number f is the total electronic plus nuclear spin, and mf is its projection onto the

polarization axis of magnetic field.

We find that increasing the magnitude of the dipole-dipole interaction significantly shifts the

position of the s-wave FR between the states |f = 9/2,mf = −7/2〉 and |f = 9/2,mf = −9/2〉.

We artificially increase Vdd(R) by letting ξ = 10, which corresponds to a magnetic dipole moment

of dysprosium (µ = 10 µB), and we use the character of this resonance at 1 µK to compare

three different computational methods: the full close-coupling (FCC) calculation, the zeroth-order

MQDT calculation of chapter 2, and the perturbative MQDT calculation of chapter 3. These three

calculations all use the same log-derivative propagation method in the region R ≤ Rm, producing

the same value for Ksr in both the zeroth-order MQDT calculation and the perturbative MQDT

calculation. Therefore, any difference between the results of these three methods is solely due to

their ability to accurately account for the influence of the potential V (R) beyond Rm.

4.4.1 Accuracy in the Near Zone

In the region Rm ≤ R ≤ Rt1 , all channels are locally open, and the perturbative MQDT

calculation uses equation (3.13) to propagate K(R) beyond its boundary condition at Rm,

K(R) ≈ Ksr −
∫ R

Rm

M (0)T (R′)V ′(R′)M (0)(R′)dR′, (4.11)

where we determine Ksr by numerically propagating the log-derivative matrix Y (R) from R ≈ 0

to Rm and evaluating equation (2.12). Alternatively, since all channels are locally open in this

region, we can instead simply continue to propagate the log-derivative matrix to a location R

beyond Rm and determine a numerically exact version of K(R). We use the following equation to

determine this numerically exact value of K(R),

K(R) =

(
Y (R)ĝ(R)− dĝ(R)

dR

)−1
(
Y (R)f̂(R)− df̂(R)

dR

)
. (4.12)
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Figure 4.5: These graphs represent the calculation of K(R) with ξ = 10 using the exact log-
derivative propagation (red dots) and the perturbative expression in equation (4.11) (blue line).
These graphs show four representative diagonal elements of K(R) that correspond to (a) an open
s-wave channel near threshold, (b) an open d-wave channel near threshold, (c) a closed s-wave
channel, and (d) a closed d-wave channel. The other elements of K(R) all have a similar radial
dependence that is not shown.
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Figure 4.5 compares the perturbative calculation to the numerically exact calculation of K(R),

where Rm = 30 a0. This value corresponds to Rm ≈ 0.31 in units of the natural van der Waals

length β. The agreement is excellent when R ≤ Rt1 ≈ 0.33. Extending both of these methods

beyond Rt1 demonstrates the numerical divergence of K(R). Not only do both of these methods

show a divergence of K(R) beyond Rt1 , but also the two calculations quickly diverge from each

other. We numerically determine that neither calculation of K(R) beyond Rt1 leads to accurate

scattering observables. Although we choose Rm ≈ Rt1 in this example, we note that the accuracy of

equation (4.11) in the region of locally open channels indicates that the alternative approximation

to Ksr′ in equation (3.29) may be useful when some closed channels are locally open well beyond Rt1 ,

which is not the case in this example problem.

4.4.2 Choosing the Elimination Radius

Beyond Rt1 , the issue of numerical convergence is simple for the FCC calculation and for the

zeroth-order MQDT calculation. Beyond Rm, we entirely formulate these calculations in terms of

quantities that we determine asymptotically. The FCC calculation simply continues to propagate

the log-derivative matrix Y (R) to the limit R→∞. In this limit, the No×No block of Y (R) shows

a clear convergence, and we use it to compute scattering observables. Likewise, the zeroth-order

MQDT calculation only requires Ksr and the QDT parameters, which we also compute in the

asymptotic limit, using the set of equations (2.17).
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Figure 4.6: This figure shows the position B0 of the s-wave FR between the
states |f = 9/2,mf = −7/2〉 and |f = 9/2,mf = −9/2〉 of 40K, as calculated by the perturbative
MQDT method. This figure shows how the resonance position depends on the location Re at
which we eliminate the closed channels from the scattering problem. The graph covers the region
Re ≥ Rt1 , where Rt1 ≈ 0.33 is the smallest outer classical turning point of any asymptotically
closed channel. We choose Rm ≈ 0.31, and we artificially increase the dipole-dipole interaction to
100 times its magnitude (ξ = 10).
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In addition to quantities that we determine asymptotically, the perturbative MQDT calcula-

tion also depends on the value of the elimination radius Re since we do not take the limit Re →∞.

In order to determine the proper value of Re, we need to determine the location beyond which the

closed channels have a negligible effect on scattering observables. For example, figure 4.6 shows

the position B0 of the FR between the states |f = 9/2,mf = −7/2〉 and |f = 9/2,mf = −9/2〉 of

potassium as a function of Re with ξ = 10. In the region Re . 0.4, the resonance position shows

a rapid dependence on Re. Past this region, the resonance position shows a clear convergence

with increasing Re, and we choose Re = 1 for this example problem.

The only open channel with a non-zero partial wave has a classical turning point on the inner

side of its d-wave centrifugal barrier at Rt ≈ 0.64. We choose Re = 1 because this choice achieves

a better accuracy than the choice of Re = 0.64. However, because the power-law growth of an

open-channel wave function under a centrifugal barrier may lead to numerical instabilities in other

problems, we could instead safely choose Re at this turning point, sacrificing approximately 0.5 G of

accuracy in the position of this resonance. Although we achieve accurate results with this method,

determining a more robust method of treating this type of channel is a possible direction of future

research.

4.4.3 Efficiency

One of the main advantages of MQDT is that Ksr and the QDT parameters are smooth

functions of energy and magnetic or electric field. As previously demonstrated in chapter 2, the

zeroth-order MQDT calculation efficiently and accurately determines scattering observables (when

V ′(R) is negligible beyond Rm) by interpolating Ksr and the QDT parameters over a wide range

of energy and field. This interpolation provides significant computational savings over the FCC

calculation, which requires a time-consuming numerical calculation at every energy and magnetic

field of interest. The efficiency of MQDT is particularly useful when describing FRs because they

tend to be narrow features in energy or field.

In this section, we show that the perturbed scattering observables also depend on quantities
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that are smooth in energy and field. We show that the quantity Ksr′ exhibits an equally smooth

dependence on energy and field as the unperturbed version Ksr, and we show that the perturbation

integrals in equation (3.37) are nearly constant functions of magnetic field. Interpolating these

quantities over a wide range of energy and magnetic field, we show a significant improvement in

accuracy over the zeroth-order MQDT calculation, while retaining all of its numerical efficiency.
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Figure 4.7: These graphs show the quantum defects µλ = tan δλ/π, where the quantities tan δλ
are either the eigenvalues of Ksr (blue dashed lines) or the eigenvalues of Ksr′ (green solid lines)
as functions of magnetic field in the range 190 − 230 G. These calculations use Rm ≈ 0.31 and
ξ = 10. The quantum defects are slightly different in each case, and they are equivalently weak
functions of magnetic field. Although this graph contains all thirteen quantum defects for both
the perturbative calculation and the non-perturbative calculation, many of the quantum defects
overlap on this scale.
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Figure 4.7 shows the quantum defects µλ = tan δλ/π, where the quantities tan δλ are either

the eigenvalues of Ksr (blue dashed lines) or the eigenvalues of Ksr′ (green solid lines) as functions

of magnetic field in the range 190−230 G. We compute Ksr using equation (2.12), and we compute

Ksr′ using equation (3.28). The numerical integration of the one-dimensional integrals in this

equation is extremely rapid, owing to the first-order nature of the perturbation theory. We find

that the eigenvalues have been only slightly shifted from their unperturbed values, and they remain

equally smooth functions in this range of magnetic field. The elements of Ksr′ are equally smooth

quantities, and we therefore achieve a numerically accurate interpolation of these elements by using

a coarse field spacing of 10 G, noting that this range and field spacing could be much larger. We

then quickly generate K̃ ′ of equation (3.15) with an arbitrarily fine resolution in field using the

interpolated values of Ksr′ and the QDT parameters.

In order to determine K ′ of equation (3.37), we only require the small set of one-dimensional

perturbation integrals
∫∞
Rm

fi(R
′)V ′ij(R

′)fj(R
′)dR′ and

∫∞
Rm

fi(R
′)V ′ij(R

′)gj(R
′)dR′, where i and j

run over the set of open channels. In this example problem, there are two open channels: the

incident s-wave channel, which has a channel collision energy of 1 µK, and an open d-wave channel

that has a threshold degenerate with the incident channel. Because these two channels have the

same threshold energy at every magnetic field, all of these perturbation integrals are nearly constant

functions of magnetic field. We numerically calculate and interpolate these integrals on the same

coarse grid as the computation of Ksr′ : from 190 − 230 G with a field spacing of 10 G. With K ′

in hand, we compute Sphys′ and, therefore, all scattering observables using equation (3.38). Note

that we can also use the quantity Ksr′
QQ + cot γ to efficiently search for FRs.
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Figure 4.8: This figure shows the s-wave elastic cross section near the FR between the
states |f = 9/2,mf = −7/2〉 and |f = 9/2,mf = −9/2〉 of 40K at a collision energy of 1 µK with
an artificially enhanced dipole-dipole interaction. This figure shows three different calculations of
the elastic cross section with ξ = 10: the zeroth-order MQDT calculation (blue dashed line), the
perturbative MQDT calculation (green solid line), and the FCC calculation (black dotted line). As
a point of reference, this figure also shows the zeroth-order MQDT calculation of the elastic cross
section with ξ = 1 (red dot-dashed line). For these calculations, Rm = 40 a0, and Re = 1 β, where
β is the van der Waals length.



97

4.4.4 Accuracy

In this section, we demonstrate the accuracy of the perturbative MQDT method by com-

paring its results to the zeroth-order MQDT calculation and to the FCC calculation. For these

calculations, we choose Rm = 40 a0 and Re = 1 β, where β is the van der Waals length. Figure 4.8

shows the s-wave elastic cross section near the FR between the states |f = 9/2,mf = −7/2〉 and

|f = 9/2,mf = −9/2〉 of 40K at a collision energy of 1 µK. The red dot-dashed line is the result of

the zeroth-order MQDT calculation for natural potassium, corresponding to a dipole-dipole inter-

action with ξ = 1. This calculation agrees well with the FCC calculation at the same interaction

strength. The other three lines on this graph represent calculations in which the dipole-dipole inter-

action has been artificially increased to 100 times the strength of natural potassium (ξ = 10). The

choice of ξ = 10 corresponds to the most magnetic atom, dysprosium (µ = 10 µB). The blue dashed

line represents the zeroth-order MQDT calculation. We see a significant change in the resonance

position and width, even though this calculation only includes the enhanced dipolar interaction at

distances less than Rm. We compute the solid green line using the perturbation theory of chapter 3,

and the FCC calculation produces the black dotted line. Figure 4.8 shows that the influence of the

dipole-dipole interaction with ξ = 10 is significant beyond Rm, shifting this particular resonance

by roughly 5 G. The perturbative MQDT calculation approximately tracks this shift.
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Figure 4.9: This figure shows the resonance field location B0 (top left panel), the resonance field
width ∆ (top right panel), the background elastic cross section σbg (bottom left panel), and the
Fano asymmetry parameter q (bottom right panel). Each panel shows three different calculations:
the zeroth-order MQDT calculation (blue dashed line), the perturbative MQDT calculation (green
solid line), and the FCC calculation (black dotted line). For these calculations, Rm = 40 a0, and
Re = 1 β, where β is the van der Waals length.
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We further investigate the accuracy of the perturbative MQDT method by using it to calculate

the shape of this same FR as a function of magnetic field for different values of ξ. We again compare

this calculation to both the zeroth-order MQDT calculation and the FCC calculation. We describe

a resonance by computing the elastic cross section σ(B) near the resonance and fitting it to the

following form,

σ(B) = σbg

(
(B −B0)/∆− q

)2
1 +

(
(B −B0)/∆

)2 , (4.13)

where B0 is the resonance field position, ∆ is the resonance field width, σbg is the background elastic

scattering cross section, and q is the Fano asymmetry parameter [19]. Figure 4.9 compares three

different methods of calculating these resonance properties, plotted as a function of ξ2. Figure 4.9(a)

shows B0; figure 4.9(b) shows ∆; figure 4.9(c) shows abg; and 4.9(d) shows q. Each figure shows

a blue dashed line for the zeroth-order MQDT calculation, a green solid line for the perturbative

MQDT calculation, and a black dotted line for the FCC calculation.

The dipolar coupling between channels gives the resonance properties B0, ∆, σbg, and q a

quadratic dependence on ξ2 at small ξ. Even though the perturbative MQDT calculation uses

only a first-order distorted wave approximation, the perturbation theory tracks this quadratic

behavior and significantly improves the zeroth-order MQDT result for each quantity and at all

interaction strengths. The perturbation theory appears to more accurately account for the shift

in the resonance location and width than for the shift in the background elastic cross section and

the Fano asymmetry parameter. The absolute error in this particular resonance location for this

artificial model is 0.41 G for a dipole strength of erbium (ξ = 7) and 0.59 G for a dipole strength

of dysprosium (ξ = 10).

4.5 Summary

We successfully applied MQDT to collisions between alkali atoms, including high partial

waves. We used the efficiency of MQDT to locate and characterize many Fano-Feshbach reso-

nances in the collisions 40K + 85Rb and 133Li + 6Cs. We also developed a method to pertur-
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batively incorporate long-range anisotropic interactions within MQDT. In the presence of strong

dipolar coupling, this method allowed for an enhanced accuracy in the calculation of scattering

observables in terms of quantities that weakly depend on energy and field. We demonstrated that

the perturbative MQDT method is capable of retaining sub-G accuracy in the calculation of a

particular Fano-Feshbach resonance position in ultracold scattering of potassium atoms with an ar-

tificially enhanced dipole-dipole interaction. This study included the entire range of atomic dipole

strengths and beyond.



Chapter 5

Molecular Scattering

This chapter contains material in references [87] and [88].

5.1 Introduction

The ultracold scattering of molecules may provide a sensitive probe of chemical reaction

dynamics. Cooling molecules to ultracold temperatures allows one to prepare the reactant molecules

in a single quantum state with very small transnational kinetic energy at large separations. Modest

external magnetic and electric fields greatly influence the character of this state and, therefore,

may have a profound effect on chemical reactions [89–93]. Studying the products of the reaction

and their dependence on external fields may lead to a more detailed understanding of the reaction

complex. At the same time, the sensitive dependence on field allows for the control of chemical

reactions. This kind of control has been demonstrated in a prototype experiment involving KRb

molecules [94,95].

In typical ultracold chemical reactions, the kinetic energy at short-range, where the reaction

dynamics take place, is on the order of 10 − 1000 K, and the asymptotic translational energy

in the reactant channels is on the ultra-low energy scale near 1 µK. While the FCC calculation

can handle this disparity in energy scales, the computations become impractically large when one

includes all of the relevant quantum states and external field effects. As a result, the vast majority

of FCC calculations of ultracold reactions only consider field-free cases without the inclusion of

spin and hyperfine splitting [89–93,96–101]. Although Tscherbul and Krems [102] have formulated
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the theory of chemical reactions for an atom-diatom system in external fields and have applied the

theory to the Li + HF reaction, the computations remain demanding.

MQDT makes use of this disparity in energy scales to greatly simplify these types of calcu-

lations, as it did for the atomic case in chapter 4. Previous extensions of MQDT describe atom-

molecule systems [39,103] and molecule-molecule reactive scattering [47,49,104,105]. These MQDT

methods estimate the overall reaction rate coefficients of several barrierless reactions [47,104] at far

less computational expense than the FCC calculations. However, these implementations of MQDT

only estimate the total reaction rate coefficient. They do not include the rotational and vibrational

degrees of freedom and, therefore, cannot calculate the ro-vibrational populations of the reaction

products.

In this chapter, we develop an MQDT treatment of non-reactive and reactive molecular

scattering that is fully capable of including external-field effects and also includes ro-vibrational

degrees of freedom. To accomplish this, we take advantage of two different coordinate systems.

One of these coordinate systems best describes the short-range region, and the other one best

describes the long-range region. This chapter explains the key features in this extension of MQDT,

and it closely follows references [87] and [88]. For non-reactive molecular collisions, reference [87]

straightforwardly applies the MQDT formalism of chapter 2 beyond the matching radius Rm in

terms of a single long-range coordinate system. For reactive molecular collisions, reference [88]

transforms the log-derivative matrix between the two different coordinate systems that best describe

each region.

The construction of short-range potentials and the solution of the coupled-channel Schrödinger

equation at short-range involve many complications that are explained in references [87] and [88].

We use the results of the FCC calculations to compare the accuracy of our extensions of MQDT.

As an example, we apply this theory to the non-reactive scattering of H2 + H2 molecules and the

reactive scattering of D + H2 molecules. The molecular MQDT results show excellent agreement

with the FCC calculations, and Ksr remains smooth and weakly energy dependent for these cases.
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5.2 H2(v1, j1) + H2(v2, j2)

The MQDT formalism of chapter 2 is directly applicable to molecular collisions that in-

volve ro-vibrational degrees of freedom. As an example, we demonstrate the ability of MQDT

to accurately describe a particular scattering process of the collision H2 + H2. We focus on the

quasi-resonant energy transfer in para-para H2 scattering, which involves a non-trivial exchange of

energy at short-range. The vibrational quantum number v and the rotational quantum number j

describe the state of each H2(v, j) molecule. We choose to describe the particular scattering process

(v1, j1, v2, j2) = (1, 0, 0, 2) → (1, 2, 0, 0). In this process, a vibrating rotationless molecule in the

state (v = 1, j = 0) collides with a rotating vibrationless molecule in the state (v = 0, j = 2).

The collision transfers the rotational energy between the two molecules, releasing a kinetic energy

of approximately 25 K.
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Figure 5.1: This figure shows the effective diabatic potential energies that are relevant in the
quasi-resonant scattering process (v1, j1, v2, j2) = (1, 0, 0, 2)→ (1, 2, 0, 0) of two H2 molecules. The
process is quasi-resonant because the molecular states are nearly degenerate, being asymptotically
separated by approximately 25 K. An asymptotic energy spacing of approximately 400 K separates
the other relevant channels from the incident channel (1, 0, 0, 2).
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The collision process (v1, j1, v2, j2) = (1, 0, 0, 2) → (1, 2, 0, 0) conserves the total rotational

angular momentum. This type of process is known to be highly state-selective [106], and one

only needs to include the channels (1, 0, 0, 2) and (1, 2, 0, 0) in order to accurately describe this

process [87]. Hence, we construct a greatly simplified scattering model that accurately describes

this process by only including the four channels (1, 0, 0, 0), (1, 0, 0, 2), (1, 2, 0, 0) and (1, 2, 0, 2).

Figure 5.1 shows the effective diabatic potential energies V J
eff(R) that asymptotically correspond

to these states, where R is the separation between the H2 molecules. Reference [87] details the

construction of V J
eff(R). This model is accurate, in part, because the process (1, 0, 0, 2)→ (1, 2, 0, 0)

is quasi-resonant, meaning that the molecular states (1, 0, 0, 2) and (1, 2, 0, 0) are nearly degenerate.

Their energies differ by approximately 25 K, and approximately 400 K separates the other molecular

states. The FCC calculation and the MQDT calculation both use this reduced set of channels.

Similar to the applications of MQDT to alkali atom scattering in chapter 4, we find that

the isotropic potential V lr(R) is a good approximation to V J
eff(R) at large R when V lr(R) has the

following form,

V lr(R) = −C6/R
6 − C8/R

8 − C10/R
10. (5.1)

This potential has the same form as in equation (2.8). To determine the dispersion coefficients C6,

C8, and C10, we fit the asymptotic expansion of V J
eff(R) for each channel to the form of V lr(R) in

equation (5.1).

The potential energy curves in figure 5.1 have a qualitatively different character than in the

alkali-atom case. The weakly polarizable H2 molecules have a small C6, producing a potential

depth that is small compared to the rotational splitting. At at collision energy 1 µK above the

incident channel (1, 0, 0, 2), the channel (1, 2, 0, 2) remains classically forbidden over the entire range

of R. This means that one cannot choose the matching radius Rm in a region where all channels

are locally open. However, the well depth of channel (1, 2, 0, 2) is so small that it remains well

separated in energy from the other channels at short range. We find that the MQDT formalism

of chapter 2 produces a Ksr that is nearly constant in energy, and we simply use its value at zero
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energy for the MQDT calculation.
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Figure 5.2: This figure shows the inelastic cross section for the quasi-resonant scattering pro-
cess (v1, j1, v2, j2) = (1, 0, 0, 2) → (1, 2, 0, 0) of two H2 molecules. This figure compares the FCC
calculation (thick black line) to the MQDT calculation with a matching radius of Rm = 6.3 a0 (thin
black line), 7.0 a0 (black dot-dashed line), 8.5 a0 (blue dotted line), and 9.2 a0 (red dashed line).
The MQDT calculation uses the single value of Ksr computed at zero energy. This calculation
converges to the FCC calculation as we increase Rm.
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Figure 5.2 shows that MQDT is able to accurately describe the quasi-resonant scattering

process (v1, j1, v2, j2) = (1, 0, 0, 2) → (1, 2, 0, 0) of two H2 molecules over an energy range that

spans six orders of magnitude, even though MQDT only uses the value of Ksr at zero energy. This

figure shows the inelastic cross section for this process, as computed by the FCC calculation (thick

black line) and by the MQDT calculation with a matching radius of Rm = 6.3 a0 (thin black

line), 7.0 a0 (black dot-dashed line), 8.5 a0 (blue dotted line), and 9.2 a0 (red dashed line). The

MQDT calculation converges to the FCC calculation as we increase Rm. The MQDT calculation

is nearly converged at Rm = 9.2 a0, which is on the order of the van der Waals length for this

system RvdW = 14.5 a0.

5.3 MQDT for Chemical Reactions

Chemical reactions add additional complexity to scattering calculations, and MQDT can

greatly simplify these calculations. In order to use MQDT to describe cold chemistry, one needs to

slightly modify the matching procedure at Rm to incorporate a transformation between different co-

ordinate systems. One best describes the short-range interactions that influence chemical reactions

in hyperspherical coordinates [107], and one best describes the long-range interactions between the

reactants or products in Jacobi coordinates. Both of these coordinate systems use the Euler angles

as external coordinates; however, the internal coordinates are different. For atom-diatom collisions,

there are three possible arrangements of the three atoms. We label the possible arrangements by τ .

Jacobi coordinates describe these arrangements in terms of sτ and Sτ . The separation sτ is the

internuclear distance between the constituents of the diatom. The separation Sτ is the distance

between the diatom center of mass and the remaining atom. The following transformation defines

the Delves hyperspherical coordinates in terms of sτ and Sτ ,

ρ =
(
s2
τ + S2

τ

)1/2
(5.2a)

θτ = tan−1 (sτ/Sτ ) , (5.2b)
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where ρ is the hyperradius and θτ is one hyperangle. The other hyperangle γτ is the angle between

the vectors ~sτ and ~Sτ .

Reference [88] supplies the detailed construction of the log-derivative matrix Y (ρ), following a

standard procedure developed in references [108] and [102]. After constructing Y (ρ) at short range,

we use Y (ρ) as a boundary condition on the log-derivative of M(Sτ ) at the matching separation Sm,

which is independent of τ . Analogous to chapter 2, we define M(Sτ ) as a the following linear

combination of the reference wave functions f̂(Sτ ) and ĝ(Sτ ) at Sτ ≥ Sm,

Mij(Sτ ) = f̂i(Sτ )δij − ĝi(Sτ )Ksr
ij . (5.3)

This equation defines Ksr. Reference [88] details the exact matching procedure we use to determine

Ksr from Y (ρ).

The reference wave functions f̂(Sτ ) and ĝ(Sτ ) represent a pair of linearly independent refer-

ence functions in each channel, satisfying the following radial Schrödinger equation,

(
− d2

dS2
τ

+
Li(Li + 1)

S2
τ

+ V lr(Sτ )

) f̂i

ĝi

 = Ei

 f̂i

ĝi

 . (5.4)

The quantum number Li specifies the partial wave, and Ei is the kinetic energy in channel i.

Similar to the previous chapters, S is in units of the natural length scale β = (2µC6/~2)1/4 of the

potential −C6/R
6, and Ei is in units of the natural energy scale Eβ = ~2/2µβ2. However, in this

chapter, we use the reduced mass of the three-body system µ =
√
m1m2m3/(m1 +m2 +m3). The

channel index i asymptotically correlates with the separated molecule quantum numbers {v, j, L}

and with the arrangement τ . The long-range reference potential V lr(Sτ ) takes the following form,

V lr(Sτ ) = −C6/S
6
τ − C8/S

8
τ − C10/S

10
τ . (5.5)

The definition of Ksr in equation (5.3) is naturally tied to the definition of the reference func-

tions f̂(R) and ĝ(R). For typical atom-diatom collisions, we can make a simplifying approximation

in the product channels. The kinetic energy is often sufficiently large in the product channels

that the reference potential V lr(Sτ ) is negligible beyond Sm. In this case, we do not use the same
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definition of the reference wave functions f̂(Sτ ) and ĝ(Sτ ) as in the rest of this thesis. We sim-

ply choose the reference wave functions f̂(Sτ ) and ĝ(Sτ ) to be the energy-normalized free-particle

solutions f(Sτ ) and g(Sτ ) in the product channels,

f̂i(Sτ ) =fi(Sτ ) = k
1/2
i Sτ jLi(kiSτ ) (5.6a)

ĝi(Sτ ) =gi(Sτ ) = k
1/2
i SτnLi(kiSτ ). (5.6b)

where ki =
√
Ei. The functions jLi(kiSτ ) and nLi(kiSτ ) are the spherical Bessel functions of the

first and second kind, respectively. The set of equations (5.6) does not merely specify boundary

conditions on the reference wave functions; we let f̂(Sτ ) and ĝ(Sτ ) have this functional form

at all Sτ ≥ Sm in the product channels. Indeed, using this set of reference wave functions is a

suitable choice in any channel that has very high kinetic energy, whether or not that channel is a

product or reactant channel.

In cold atom-diatom collisions, the kinetic energy in the reactant channels is typically in the

mK–µK range, and the long-range reference potential is not negligible. As the solutions f(Sτ ) and

g(Sτ ) in equation (5.6) strongly depend on energy in the threshold regime, we make a different

choice for f̂(Sτ ) and ĝ(Sτ ) in the reactant channels. We choose to give these reference wave

functions WKB-like boundary conditions at short range. Using this kind of reference wave function

is not typical in quantum chemistry. These functions are not energy-normalized, and they weakly

depend on energy in the threshold regime.

Specifically, we define f̂(Sτ ) and ĝ(Sτ ) by the following WKB-like boundary conditions at Sx

in the reactant channels,

f̂i(Sτ ) =
1√
ki(Sτ )

sin

(∫ Sτ

Sx

ki(S
′
τ )dS′τ + φi

)
at Sτ = Sx (5.7a)

ĝi(Sτ ) = − 1√
ki(Sτ )

cos

(∫ Sτ

Sx

ki(S
′
τ )dS′τ + φi

)
at Sτ = Sx, (5.7b)

where ki(Sτ ) =
√
Ei − V lr(Sτ ). These are the same reference wave functions that we use in the

rest of this thesis. We choose a small enough Sx that the kinetic energy in the reference potential

at Sx is positive in every channel. The phase φi is chosen in the same manner as in chapter 2



111

in order to preserve the numerical linear independence of these functions in the asymptotic limit,

even in the threshold regime when the partial wave is nonzero. The standard MQDT transforma-

tions of chapter 2 relate these solutions to the energy-normalized solutions f(Sτ ) and g(Sτ ) in the

asymptotic limit. In the reactant channels,

f̂i(Sτ )A1/2
i

Sτ→∞−−−−→ fi(Sτ ) (5.8a)

f̂i(Sτ )A−1/2
i Gi + ĝi(Sτ )A−1/2

i
Sτ→∞−−−−→ gi(Sτ ). (5.8b)

The main feature of Ksr in the theory is that it is generally only weakly dependent on energy

in the ultracold regime near the threshold of the reactants. We demonstrate that Ksr is weakly

dependent on energy for a specific example in the next section. When Ksr is a smooth function

of energy, we can interpolate Ksr over a wide range of collision energies, reducing the number of

energies at which we must perform the full hyperspherical calculation.

After interpolating Ksr, we perform the MQDT procedure that produces the physical scat-

tering matrix Sphys from Ksr. We eliminate the closed channels in the typical MQDT fashion,

yielding the reduced K-matrix K̃,

K̃ = Ksr
PP −Ksr

PQ

(
cot γ +Ksr

QQ

)−1
Ksr

QP. (5.9)

We now adapt the MQDT transformation to account for the simple choice of reference wave func-

tions in the product channels, given by equation (5.6). To perform this transformation, we conve-

niently repartition K̃ into reactant (R) channels and product (P) channels,

K̃ =

 K̃RR K̃RP

K̃PR K̃PP

 ,

not to be confused with P and Q. There remains only the matter of translating the reference

functions f̂(Sτ ) and ĝ(Sτ ) into the energy-normalized versions f(Sτ ) and g(Sτ ). In the product

channels, no transformation is necessary because we use the relations in equation (5.6). In the

reactant channels, we use the relations in equation (5.8).
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In block notation, the final expression for K becomes,

KRR = A1/2(IR + K̃RRG)−1K̃RRA1/2 (5.10)

KPR = K̃PR

(
IR − G(IR + K̃RRG)−1K̃RR

)
A1/2 (5.11)

KRP = A1/2(IR + K̃RRG)−1K̃RP (5.12)

KPP = K̃PP − K̃PRG(IR + K̃RRG)−1K̃RP, (5.13)

where IR is the Nr ×Nr identity matrix and Nr is the number of reactant channels. We illustrate

the symmetry of K by the following transformation,

KT
RP = K̃PR(IR + GK̃RR)−1A1/2 (5.14)

= K̃PR

(
IR − (K̃−1

RRG
−1 + IR)−1

)
A1/2 (5.15)

= K̃PR

(
IR − G(IR + K̃RRG)−1K̃RR

)
A1/2 (5.16)

= KPR. (5.17)

We use Woodbury’s matrix identity [109] to arrive at equation (5.15). We must also incorporate

the additional phase shift η that the reactant-channel reference wave functions experience during

their propagation in the long-range potential V lr(Sτ ). This leads to the physical scattering matrix,

Sphys =

 eiη 0

0 IP

 (I + iK)(I − iK)−1

 eiη 0

0 IP

 .

The matrix I is the No ×No identity matrix, where No is the number of open channels.
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Figure 5.3: This graph shows the ten lowest adiabatic surface function energies εn(ρ) (defined in
reference [88]) as a function of the hyperradius ρ for the D + H2(v = 0, j = 0) system with J = 0.
Each adiabatic curve asymptotically correlates with a unique ro-vibrational level of either the H2

molecule or the DH molecule, as indicated in the figure.
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5.4 D + H2(v, j)→ HD(v′, j′) + H

As an illustrative example, we apply the above approach for reactive scattering to the re-

action D + H2(v, j) → HD(v′, j′) + H. This approach requires an accurate description of the

long-range potential in the reactant channels, where we use the MQDT reference wave functions.

Since most of the available potential energy surfaces for elementary chemical reactions do not pro-

vide an accurate treatment of the long-range interaction, a reliable description of reactive scattering

in ultracold collisions continues to be a challenge. The availability of an accurate potential energy

surface for D + H2 motivates the choice of using this collision as an example. We use the potential

energy surface of Mielke et al. [110] that includes the long-range forces for the diatomic species.

Reference [88] details the construction of the diabatic potential matrix Vτ (Sτ ) and the adiabatic

surface function energies εn(ρ). Figure 5.3 shows the ten lowest values of εn(ρ) for the D + H2

system with J = 0. Each adiabatic curves asymptotically correlates with a unique ro-vibrational

level of either the H2 molecule or the HD molecule. We also calculate similar energies for the higher

ro-vibrational levels of these molecules.

We numerically compute the MQDT reference functions and parameters by solving the one-

dimensional Schrödinger equation (5.4). We use the form of V lr(Sτ ) in equation (5.1). Constructing

this potential requires the dispersion coefficients C6, C8, and C10 for the D + H2 atom-diatom

interactions. We numerically extract effective values of the dispersion coefficients by fitting the

long-range part of the lowest diagonal element of Vτ (Sτ ) to the form of V lr(Sτ ). The effective

dispersion coefficients are slightly sensitive to the initial vibrational level of H2, but we use the

same v = 0 coefficients for all vibrational levels.
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Figure 5.4 shows the diagonal elements of Ksr in the reactant channels as a function of

collision energy. We choose the state (v, j) = (0, 0) of the H2 molecule as the incident channel.

The matching radius is 20 a0. Figure 5.4 clearly demonstrates that Ksr is weakly dependent on

energy in the ultracold regime, and it maintains this behavior up to 100 mK. Beyond this range,

Ksr becomes a smooth function of energy. Hence, we divide the interpolation of Ksr into two

different ranges of collision energy: the ultra-low energy range E = 1 µK – 1 mK, and the energy

range E = 100 mK – 1 K. In the ultra-low regime, we use a linear fit to the value of Ksr at 1 µK

and 1 mK. At higher energies, we interpolate Ksr on a grid with an energy spacing of 200 mK.
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Figure 5.5: This figure compares the FCC calculation and the MQDT calculation of the rotationally
resolved reaction cross sections for the HD product in collisions of D + H2(v = 4, j = 0). The left
panels (1 and 2) correspond to HD(v′ = 2, j′), the middle panels (3 and 4) correspond to HD(v′ =
3, j′), and the right panels (5 and 6) correspond to HD(v′ = 4, j′).
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The MQDT approach above provides the same full quantum state resolution of reaction

products as in FCC calculations, an aspect missing from previous MQDT treatments of ultra-

cold chemistry. As an illustrative example, we choose to study collisions with H2 in the initial

state (v, j) = (4, 0), which allows for the population of several ro-vibrational levels of the HD

molecule. Figure 5.5 compares the FCC calculation and the MQDT calculation of the rotationally

resolved cross sections for the HD product in different energetically open vibrational levels. The

different panels correspond to the rotational distributions in the three highest populated vibrational

levels of HD v′ = 2, 3, and 4. The black curves are the FCC results, and the red curves are the

MQDT results.

The agreement between the FCC calculation and the MQDT calculation is excellent. This

clearly indicates that Ksr fully characterizes the short-range reaction dynamics. We attribute

any small difference between these two calculations to neglecting the anisotropic contribution to

the interaction potential in the construction of the MQDT reference functions. In principle, the

perturbative MQDT method of chapter 3 can further improve the agreement.

5.5 Summary

We have presented a formulation of MQDT that is able to yield ro-vibrationally resolved

cross sections and rate coefficients for ultracold molecular collisions, including chemical reactions.

MQDT provided an accuracy comparable to the FCC calculations with far less computational

cost. The method has made use of the close-coupling approach but has restricted it to the complex

short-range region, where the chemically relevant physics occurs. We have described the long-range

physics using the MQDT formalism of chapter 2. We have illustrated the usefulness and robustness

of the method by applying it to the benchmark collision H2 + H2 and to the benchmark chemical

reaction D + H2 → HD + H. References [87] and [88] show many more results, which all have a

comparable accuracy to the results in this chapter.



Chapter 6

Conclusion

As far back as the 4th century BC, adding defects to simple models has greatly aided our

understanding of complex physical phenomena. In particular, multichannel quantum defect the-

ory (MQDT) has greatly simplified the study of complex atomic and molecular collisions. MQDT

uses simple solutions to accurately describe the long-range interactions that govern many crucial

aspects of these collisions. Although these simple solutions are not accurate at short range, MQDT

accurately describes the short-range interactions in terms of quantum defects and matches the

two regions together. This procedure generates extremely rapid and accurate scattering calcula-

tions because a single calculation of the quantum defects can accurately describe the short-range

physics over a large range of collision energy and magnetic fields in many cases. MQDT has seen a

particularly fruitful application to cold collisions, drastically increasing the numerical efficiency of

scattering calculations and aiding the characterization of Fano-Feshbach resonances.

In this thesis, we have described a version of MQDT that is easy to implement and that

accurately describes scattering calculations, gaining both numerical efficiency and conceptual in-

sights over other types of calculations. We have defined a standardization of MQDT that allows

the long-range QDT parameters to be independent of the short-range interactions, and our unique

standardization is able to produce numerical reference wave functions that retain their linear inde-

pendence at long range, even under centrifugal barriers described by high partial waves. Using these

reference wave functions, we were able to calculate QDT parameters that are smooth in energy.

Simple power laws described all of these parameters at ultracold energies, and we derived analytic



120

expressions for these parameters in the threshold regime for potentials dominated by −C6/R
6 at

long range. We have also extended MQDT to incorporate long-range anisotropic interactions that

are typically ignored in applications of MQDT. To accomplish this, we used a unique distorted

wave approximation to generate a perturbed short-range K-matrix that is weakly dependent on

energy and field.

We have successfully applied MQDT to the collisions of 40K + 85Rb and 133Li + 6Cs, including

non-zero partial waves. We used the efficiency of MQDT to locate and characterize many Fano-

Feshbach resonances in these systems. We also explored the ability of the perturbative MQDT

method to incorporate the effects of strong magnetic dipole-dipole interactions. We used this

method to describe a particular Fano-Feshbach resonance in the ultracold scattering of potassium

atoms with an artificially enhanced dipole-dipole interaction. This method achieved sub-G accuracy

in the position of this resonance through the entire range of atomic dipole strengths, while retaining

the numerical efficiency of the zeroth-order MQDT calculation.

We have provided the modifications to MQDT that molecular scattering and cold chemistry

require. We have presented a formulation of MQDT that is able to yield ro-vibrationally resolved

cross sections and rate coefficients for ultracold molecular collisions, including chemical reactions.

As an example, we applied this extension of MQDT to the benchmark collision H2 + H2 and the

benchmark chemical reaction D + H2 → HD + H. MQDT produced accurate results from the

interpolation of an energy-smooth Ksr in both cases.

In the near future, we plan to apply MQDT to much more exotic atomic and molecular

collisions than these example problems. One possible limitation of this method is that Ksr may

contain resonances from ro-vibrational channels that are locally open at short range and become

closed at separations smaller than the matching radius Sm [39]. We did not encounter these

resonances in our studies of H2 + H2 and D + H2, which have shallow potential wells. Our

immediate goal is to apply MQDT to the benchmark chemical reaction F + H2, including electronic

spin states, nuclear spin states, and an external magnetic field. Similar to our study of alkali-atom

collisions, our extension of MQDT to molecular collisions may quickly and accurately describe a
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whole forest of Fano-Feshbach resonances over a large range of energy and field.



Bibliography

[1] Plato. Plato: Complete Works. Hackett Publishing Company, 1997.

[2] G. E. R. Lloyd. Early Greek Science: Thales to Aristotle. Chatto and Windus, 1974.

[3] T. Bunn. Homocentric spheres: What Eudoxus and Aristotle thought about planetary mo-
tion. Web, May 2015. https://facultystaff.richmond.edu/∼ebunn/homocentric/.

[4] J. T. Cushing. Philosophical Concepts in Physics. Cambridge University Press, 1998.

[5] H. Kragh. Niels Bohr and the Quantum Atom: The Bohr Model of Atomic Structure
1913–1925. Oxford Scholarship Online, 2012.

[6] E. Schrödinger. Versuch zur modellmassigen deutung des terms der scharfen nebenserien. Z.
Phys., 4:347354, 1921.

[7] N. Bohr. The spectra of helium and hydrogen. Nature, 92:231–2, 1913.

[8] N. Bohr. On the quantum theory of radiaton and the structure of the atom. Phil. Mag.,
30:394–415, 1915.

[9] E. Rutherford. The scattering of α and β particles by matter and the structure of the atom.
Phil. Mag., 21:669–688, 1911.

[10] N. Bohr and D. Coster. Röntegenspektren and periodisches system der elemente. Z. Phys.,
12:342–374, 1923.

[11] A. R. P. Rau and M. Inokuti. The quantum defect: Early history and recent developments.
Am. J. Phys., 65:221, 1997.
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electronic state up to 15 Å. J. Chem. Phys., 103:3350–3356, 1995.

[81] L. Li, A. M. Lyyra, W. T. Luh, and W. C. Stwalley. Observation of the 39K2 a
3Σ+

u state by
perturbation facilitated optical-optical double resonance resolved fluorescence spectroscopy.
J. Chem. Phys., 93:8452–8463, 1990.

[82] W. T. Zemke, C.C. Tsai, and W. C. Stwalley. Analysis of long range dispersion and exchange
interactions between two K atoms. J. Chem. Phys., 101:10382–10387, 1994.

[83] G. Zhao, W. T. Zemke, J. T. Kim, B. Ji, H. Wang, J. T. Bahns, W. C. Stwalley, L. Li, A. M.
Lyyra, and C. Amiot. New measurements of the a 3Σ+

u state of K2 and improved analysis
of long-range dispersion and exchange interactions between two K atoms. J. Chem. Phys.,
105:7976–7985, 1996.

[84] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin. Tuning p-wave interactions in an ultracold
Fermi gas of atoms. Phys. Rev. Lett., 90:053201, 2003.



127

[85] M. Marinescu, H. R. Sadeghpour, and A. Dalgarno. Dispersion coefficients for alkali-metal
dimers. Phys. Rev. A, 49:982, 1994.

[86] J. P. Gaebler. Photoemission Spectroscopy of a Strongly Interacting Fermi Gas. PhD thesis,
University of Colorado, Boulder, 2010.

[87] J. Hazra, B. P. Ruzic, N. Balakrishnan, and J. L. Bohn. Multichannel quantum defect
theory for rovibrational transitions in ultracold molecule-molecule collisions. Phys. Rev. A,
90:032711, 2014.

[88] J. Hazra, B. P. Ruzic, J. L. Bohn, and N. Balakrishnan. Quantum defect theory for cold
chemistry with product-quantum-state resolution. Phys. Rev. A, 90:062703, 2014.

[89] R. V. Krems. Molecules near absolute zero and external field control of atomic and molecular
dynamics. Int. Rev. Phys. Chem., 24:99–118, 2005.

[90] P. F. Weck and N. Balakrishnan. Importance of long-range interactions in chemical reactions
at cold and ultracold temperatures. Int. Rev. Phys. Chem., 25:283, 2006.

[91] J. M. Hutson and P. Soldán. Molecule formation in ultracold atomic gases. Int. Rev. Phys.
Chem., 25:497–526, 2006.

[92] J. M. Hutson and P. Soldán. Molecular collisions in ultracold atomic gases. Int. Rev. Phys.
Chem., 26:1–28, 2007.

[93] R. V. Krems. Cold controlled chemistry. Phys. Chem. Chem. Phys., 10:4079, 2008.

[94] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel, S. Ko-
tochigova, P. S. Julienne, D. S. Jin, and J. Ye. A high phase-space-density gas of polar
molecules. Science, 322:231, 2008.

[95] K.-K. Ni, S. Ospelkaus, D. Wang, G. Quéméner, B. Neyenhuis, M. H. G. de Miranda, J. L.
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Appendix A

Derivation of the Perturbed Short-range K-matrix

In this appendix, we derive a first-order approximation to the perturbed short-range K-

matrix Ksr′ that only depends on convergent integrals. We accomplish this by deriving an ap-

proximate set of equations for the constants C ′ and K̃ ′ that represent F̂ (R) at Re. Although this

set of equations depends on exponentially divergent integrals, we show that K̃ ′, from which we

derive all scattering observables, only depends on convergent integrals to first order in V ′(R). In

order to arrive at Ksr′ , we approximate the behavior of F̂ (R) at Re by neglecting the exponentially

divergent integrals that do not contribute to K̃ ′. We use the resulting expression for F̂ (R) to derive

a first-order expression for Ksr′ .

The set of equations (3.15 - 3.16) define C ′ and K̃ ′,

F̂P(R) =f̂P(R)− ĝP(R)K̃ ′ at R = Re (A.1a)

F̂Q(R) =
(
f̂Q(R) + ĝQ(R) cot γ

)
C ′ at R = Re (A.1b)

=χ−Q(R) csc γC ′ at R = Re. (A.1c)

We derive expressions for C ′ and K̃ ′ by finding an approximation to F̂ (R) at Re and setting it equal

to the representation of F̂ (R) in the set of equations (A.1). To this end, we can use equation (3.22)



130

to approximate the behavior of F̂ (R) at Re,

F̂ (R) ≈
(
f̂(R)I(Rt1)− ĝ(R)J(Rt1)

)
B′

− f̂(R)

∫ Re

Rt1

ĝ(R′)V ′(R′)
(
f̂(R′)I(Re)− ĝ(R′)J(Re)

)
B′dR′

+ ĝ(R)

∫ Re

Rt1

f̂(R′)V ′(R′)
(
f̂(R′)I(Re)− ĝ(R′)J(Re)

)
B′dR′ at R = Re. (A.2)

However, because f̂(R) and ĝ(R) exponentially diverge in the closed channels beyond their outer

classical turning points, some of the integrals in equation (A.2) exponentially diverge with increas-

ing Re. Hence, using this equation to approximate the behavior of F̂ (R) at Re may lead to values

of B′, C ′, and K̃ ′ that diverge with increasing Re as well.

In order to isolate the divergences in equation (A.2), we define a new set of linearly indepen-

dent closed-channel reference wave functions χ−(R) and χ+(R). We rewrite equation (2.16) that

defines χ−(R),

χ−i (R) = f̂i(R) sin γi + ĝi(R) cos γi
R→∞−−−−→∝ e−κiR. (A.3)

We force χ+(R) to be linearly independent from χ−(R) by defining χ+(R) as the following linear

combination of f̂(R) and ĝ(R) in each closed channel i,

χ+
i (R) = ĝi(R) sin γi − f̂i(R) cos γi. (A.4)

Unlike χ−(R), which exponentially decays in the limit R→∞, the reference wave function χ+(R)

exponentially diverges in this limit. The Wronskian of this new set of reference wave functions is

equal to one in each closed channel i, W
(
χ−i (R), χ+

i (R)
)

= 1.

Repartitioning all matrices into open (P) channels and closed (Q) channels, M(R) has the

following form,

MXY(R) =f̂X(R)IXY(R)− ĝX(R)JXY(R), (A.5)

where the subscripts X and Y stand for either P or Q. In terms of χ−Q(R) and χ+
Q(R), we represent

MQY(R) by the coefficients XQY(R) and YQY(R),

MQY(R) =χ−Q(R)XQY(R)− χ+
Q(R)YQY(R). (A.6)
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The matrix χ+
Q(R) is the Nc × Nc diagonal matrix whose diagonal elements consist of the closed

channel wave function χ+(R). Using equations (A.3) and (A.4) that define χ−(R) and χ+(R) in

terms of f̂(R) and ĝ(R), we relate XQY(R) and YQY(R) to IQY(R) and JQY(R) by,

XQY(R) = sin γIQY(R)− cos γJQY(R) (A.7a)

YQY(R) = cos γIQY(R) + sin γJQY(R), (A.7b)

with inverse,

IQY(R) = sin γXQY(R) + cos γYQY(R) (A.8a)

JQY(R) = sin γYQY(R)− cos γXQY(R). (A.8b)

We substitute the expression for MPY(R) in equation (A.5) and the expression for MQY(R) in

equation (A.6) into the open channels and closed channels of the transformation F̂ (R) = M(R)B′,

respectively,

F̂P(R) =f̂P(R)
(
IPP(Re)B

′
P + IPQ(Re)B

′
Q

)
− ĝP(R)

(
JPP(Re)B

′
P + JPQ(Re)B

′
Q

)
(A.9a)

F̂Q(R) =χ−Q(R)
(
XQP(Re)B

′
P +XQQ(Re)B

′
Q

)
− χ+

Q(R)
(
YQP(Re)B

′
P + YQQ(Re)B

′
Q

)
. (A.9b)

This representation of F̂ (R) at Re clearly identifies XQP(Re)B
′
P + XQQ(Re)B

′
Q as the coefficient

in front of the exponentially decaying reference wave function χ−Q(R). This representation also

identifies YQP(Re)B
′
P +YQQ(Re)B

′
Q as the coefficient in front of the exponentially growing reference

wave function χ+
Q(R). We are, therefore, in a position to zero the latter coefficient so as to preserve

acceptable boundary conditions on F̂ (R) at Re,

YQP(Re)B
′
P + YQQ(Re)B

′
Q = 0. (A.10)

Repartitioning equation (A.2) into open channels and closed channels, produces the following

approximations for the coefficients in front of f̂P(R), ĝP(R), χ−Q(R), and χ+
Q(R) in the set of
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equations (A.9),

IPP(Re)B
′
P + IPQ(Re)B

′
Q ≈IPP(Rt1)B′P + IPQ(Rt1)B′Q

−
∫ Re

Rt1

ĝP(R′)V ′PP(R′)f̂P(R′)
(
IPP(Re)B

′
P + IPQ(Re)B

′
Q

)
dR′

+

∫ Re

Rt1

ĝP(R′)V ′PP(R′)ĝP(R′)
(
JPP(Re)B

′
P + JPQ(Re)B

′
Q

)
dR′

−
∫ Re

Rt1

ĝP(R′)V ′PQ(R′)χ−Q(R′)
(
XQP(Re)B

′
P +XQQ(Re)B

′
Q

)
dR′

(A.11a)

JPP(Re)B
′
P + JPQ(Re)B

′
Q ≈JPP(Rt1)B′P + JPQ(Rt1)B′Q

−
∫ Re

Rt1

f̂P(R′)V ′PP(R′)f̂P(R′)
(
IPP(Re)B

′
P + IPQ(Re)B

′
Q

)
dR′

+

∫ Re

Rt1

f̂P(R′)V ′PP(R′)ĝP(R′)
(
JPP(Re)B

′
P + JPQ(Re)B

′
Q

)
dR′

−
∫ Re

Rt1

f̂P(R′)V ′PQ(R′)χ−Q(R′)
(
XQP(Re)B

′
P +XQQ(Re)B

′
Q

)
dR′

(A.11b)

XQP(Re)B
′
P +XQQ(Re)B

′
Q ≈XQP(Rt1)B′P +XQQ(Rt1)B′Q

−
∫ Re

Rt1

χ+
Q(R′)V ′QP(R′)f̂P(R′)

(
IPP(Re)B

′
P + IPQ(Re)B

′
Q

)
dR′

+

∫ Re

Rt1

χ+
Q(R′)V ′QP(R′)ĝP(R′)

(
JPP(Re)B

′
P + JPQ(Re)B

′
Q

)
dR′

−
∫ Re

Rt1

χ+
Q(R′)V ′QQ(R′)χ−Q(R′)

(
XQP(Re)B

′
P +XQQ(Re)B

′
Q

)
dR′

(A.11c)

YQP(Re)B
′
P + YQQ(Re)B

′
Q ≈YQP(Rt1)B′P + YQQ(Rt1)B′Q

−
∫ Re

Rt1

χ−Q(R′)V ′QP(R′)f̂P(R′)
(
IPP(Re)B

′
P + IPQ(Re)B

′
Q

)
dR′

+

∫ Re

Rt1

χ−Q(R′)V ′QP(R′)ĝP(R′)
(
JPP(Re)B

′
P + JPQ(Re)B

′
Q

)
dR′

−
∫ Re

Rt1

χ−Q(R′)V ′QQ(R′)χ−Q(R′)
(
XQP(Re)B

′
P +XQQ(Re)B

′
Q

)
dR′.

(A.11d)
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In this equation we have used the exact relationship in equation (A.10) to zero the coefficient

YQP(Re)B
′
P + YQQ(Re)B

′
Q that would otherwise appear inside the integrals on the right hand side

of these equations.

From the structure of equation (A.11), we deduce the following expressions for IPY(Re),

JPY(Re), XQY(Re), and YQY(Re) that form an approximation to F̂ (R) at Re,

IPY(Re) ≈IPY(Rt1)−
∫ Re

Rt1

ĝP(R′)V ′PP(R′)
(
f̂P(R′)IPY(Re)− ĝP(R′)JPY(Re)

)
dR′

−
∫ Re

Rt1

ĝP(R′)V ′PQ(R′)χ−Q(R′)XQP(Re)dR
′ (A.12a)

JPY(Re) ≈JPY(Rt1)−
∫ Re

Rt1

f̂P(R′)V ′PP(R′)
(
f̂P(R′)IPY(Re)− ĝP(R′)JPY(Re)

)
dR′

−
∫ Re

Rt1

f̂P(R′)V ′PQ(R′)χ−Q(R′)XQP(Re)dR
′ (A.12b)

XQY(Re) ≈XQY(Rt1)−
∫ Re

Rt1

χ+
Q(R′)V ′QP(R′)

(
f̂P(R′)IPY(Re)− ĝP(R′)JPY(Re)

)
dR′

−
∫ Re

Rt1

χ+
Q(R′)V ′QQ(R′)χ−Q(R′)XQP(Re)dR

′ (A.12c)

YQY(Re) ≈YQY(Rt1)−
∫ Re

Rt1

χ−Q(R′)V ′QP(R′)
(
f̂P(R′)IPY(Re)− ĝP(R′)JPY(Re)

)
dR′

−
∫ Re

Rt1

χ−Q(R′)V ′QQ(R′)χ−Q(R′)XQP(Re)dR
′. (A.12d)

The right hand side of the set of equations (A.12) includes integrals that contain the co-

efficients IPY(Re), JPY(Re), and XQY(Re), which are thus far unknown. However, these coeffi-

cients differ from their values at Rt1 by integrals over V ′(R). Therefore, using the approxima-

tions IPY(Re) ≈ IPY(Rt1), JPY(Re) ≈ JPY(Rt1), and XQY(Re) ≈ XQY(Rt1) inside the integrals on

the right hand side of the set of equations (A.12) is valid to order V ′(R). This leads to the following
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relations,

IPY(Re) ≈IPY(Rt1)−
∫ Re

Rt1

ĝP(R′)V ′PP(R′)
(
f̂P(R′)IPY(Rt1)− ĝP(R′)JPY(Rt1)

)
dR′

−
∫ Re

Rt1

ĝP(R′)V ′PQ(R′)χ−Q(R′)XQP(Rt1)dR′ (A.13a)

JPY(Re) ≈JPY(Rt1)−
∫ Re

Rt1

f̂P(R′)V ′PP(R′)
(
f̂P(R′)IPY(Rt1)− ĝP(R′)JPY(Rt1)

)
dR′

−
∫ Re

Rt1

f̂P(R′)V ′PQ(R′)χ−Q(R′)XQP(Rt1)dR′ (A.13b)

XQY(Re) ≈XQY(Rt1)−
∫ Re

Rt1

χ+
Q(R′)V ′QP(R′)

(
f̂P(R′)IPY(Rt1)− ĝP(R′)JPY(Rt1)

)
dR′

−
∫ Re

Rt1

χ+
Q(R′)V ′QQ(R′)χ−Q(R′)XQP(Rt1)dR′ (A.13c)

YQY(Re) ≈YQY(Rt1)−
∫ Re

Rt1

χ−Q(R′)V ′QP(R′)
(
f̂P(R′)IPY(Rt1)− ĝP(R′)JPY(Rt1)

)
dR′

−
∫ Re

Rt1

χ−Q(R′)V ′QQ(R′)χ−Q(R′)XQP(Rt1)dR′. (A.13d)

We equate the coefficients in front of f̂P(R) and ĝP(R) in equation (A.9a) with the corre-

sponding coefficients in front of f̂P(R) and ĝP(R) in equation (A.1a),

I =IPP(Re)B
′
P + IPQ(Re)B

′
Q (A.14a)

−K̃ ′ =JPP(Re)B
′
P + JPQ(Re)B

′
Q, (A.14b)

where I is the No × No identity matrix. In a similar manner, we equate the coefficients in front

of χ−Q(R) and χ+
Q(R) in equation (A.9b) with the corresponding coefficients in front of χ−Q(R) and

χ+
Q(R) in equation (A.1c),

csc γC ′ =XQP(Re)B
′
P +XQQ(Re)B

′
Q (A.15a)

0 =YQP(Re)B
′
P + YQQ(Re)B

′
Q. (A.15b)

Equations (A.14) and (A.15) form an exact and complete set of equations for the constants B′, C ′,

and K̃ ′ in terms of the coefficients IPY(Re), JPY(Re), XQY(Re), and YQY(Re). Solving the system
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of equations (A.14) and (A.15) leads to the following relations,

B′P =
(
IPP(Re)− IPQ(Re)Y

−1
QQ(Re)YQP(Re)

)−1
(A.16a)

B′Q =− Y −1
QQ(Re)YQP(Re)

(
IPP(Re)− IPQ(Re)Y

−1
QQ(Re)YQP(Re)

)−1
(A.16b)

csc γC ′ =
(
XQP(Re)−XQQ(Re)Y

−1
QQ(Re)YQP(Re)

)(
IPP(Re)− IPQ(Re)Y

−1
QQ(Re)YQP(Re)

)−1

(A.16c)

−K̃ ′ =
(
JPP(Re)− JPQ(Re)Y

−1
QQ(Re)YQP(Re)

)(
IPP(Re)− IPQ(Re)Y

−1
QQ(Re)YQP(Re)

)−1
.

(A.16d)

Substituting the expressions for IPY(Re), JPY(Re), XQY(Re), and YQY(Re) from the set of

equations (A.13) into the set of equations (A.16d), produces an approximation to K̃ ′ that does not

depend on the integrals that contain χ+
Q(R′) in equation (A.13c). Hence, we have a perturbative

expression for K̃ ′, from which we derive all scattering observables, that only depends on integrals

that converge with increasing Re.

However, it is more useful to arrive at Ksr′ = J(Re)I
−1(Re) because we expect it to be

smooth in energy and field. To this end, we further approximate the representation of F̂ (R)

at Re by neglecting the integrals that contain χ+
Q(R′) in equation (A.13c) without affecting the

value of scattering observables within this first-order approximation. We write the corresponding

approximation for XQY(Re) below,

XQY(Re) ≈XQY(Rt1). (A.17)

The approximate coefficients in equations (A.13a), (A.13b), (A.13d), and (A.17) represent

F̂ (R) at Re. In order to derive Ksr′ = J(Re)I
−1(Re), we translate the coefficients XQY(Re) and

YQY(Re) into IQY(Re) and JQY(Re) using the relations in the set of equations (A.8). This produces
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the following set of approximations for I(Re) and J(Re) in block form,

IPY(Re) ≈IPY(Rt1)−
∫ Re

Rt1

ĝP(R′)V ′PP(R′)
(
f̂P(R′)IPY(Rt1)− ĝP(R′)JPY(Rt1)

)
dR′

−
∫ Re

Rt1

ĝP(R′)V ′PQ(R′)χ−Q(R′) (sin γIQY(Rt1)− cos γJQY(Rt1)) dR′ (A.18a)

JPY(Re) ≈JPY(Rt1)−
∫ Re

Rt1

f̂P(R′)V ′PP(R′)
(
f̂P(R′)IPY(Rt1)− ĝP(R′)JPY(Rt1)

)
dR′

−
∫ Re

Rt1

f̂P(R′)V ′PQ(R′)χ−Q(R′) (sin γIQY(Rt1)− cos γJQY(Rt1)) dR′ (A.18b)

IQY(Re) ≈IQY(Rt1)− cos γ

∫ Re

Rt1

χ−Q(R′)V ′QP(R′)
(
f̂P(R′)IPY(Rt1)− ĝP(R′)JPY(Rt1)

)
dR′

− cos γ

∫ Re

Rt1

χ−Q(R′)V ′QQ(R′)χ−Q(R′) (sin γIQY(Rt1)− cos γJQY(Rt1)) dR′ (A.18c)

JQY(Re) ≈JQY(Rt1)− sin γ

∫ Re

Rt1

χ−Q(R′)V ′QP(R′)
(
f̂P(R′)IPY(Rt1)− ĝP(R′)JPY(Rt1)

)
dR′

− sin γ

∫ Re

Rt1

χ−Q(R′)V ′QQ(R′)χ−Q(R′) (sin γIQY(Rt1)− cos γJQY(Rt1)) dR′, (A.18d)

where we have used equation (A.7a) to replace XQY(Rt1) with sin γIQY(Rt1)− cos γJQY(Rt1).

To simplify this result, we write the set of equations (A.18) in full matrix notation,

I(Re) ≈I(Rt1)−
∫ Re

Rt1

 ĝP(R′) 0

0 cos γχ−Q(R′)

V ′(R′)

 f̂P(R′) 0

0 sin γχ−Q(R′)

 I(Rt1)dR′

+

∫ Re

Rt1

 ĝP(R′) 0

0 cos γχ−Q(R′)

V ′(R′)

 ĝP(R′) 0

0 cos γχ−Q(R′)

 J(Rt1)dR′ (A.19a)

J(Re) ≈J(Rt1)−
∫ Re

Rt1

 f̂P(R′) 0

0 sin γχ−Q(R′)

V ′(R′)

 f̂P(R′) 0

0 sin γχ−Q(R′)

 I(Rt1)dR′

+

∫ Re

Rt1

 f̂P(R′) 0

0 sin γχ−Q(R′)

V ′(R′)

 ĝP(R′) 0

0 cos γχ−Q(R′)

 J(Rt1)dR′. (A.19b)

These equations involve integrals that contain the open-channel wave functions f̂P(R′) and ĝP(R′)

and the physically acceptable closed-channel wave function χ−Q(R′). The exponentially divergent

wave function χ+
Q(R′) does not appear in these expressions for I(Re) and J(Re).
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We approximate Ksr′ by directly substituting the expressions for the coefficients I(Re) and

J(Re) in the set of equations (A.19) into the equation Ksr′ = J(Re)I(Re)
−1 and by only keeping

terms that are first-order in V ′(R). We define the first-order quantities ∆I and ∆J below,

∆I =I(Re)− I(Rt1) (A.20a)

∆J =J(Re)− J(Rt1). (A.20b)

We assume that ∆I << I(Rt1), and we make the following approximations,

Ksr′ = (J(Rt1) + ∆J) (I(Rt1) + ∆I)−1

≈ (J(Rt1) + ∆J)
(
I−1(Rt1)− I−1(Rt1)∆II−1(Rt1)

)
(A.21a)

≈K(Rt1)−K(Rt1)∆II−1(Rt1) + ∆JI−1(Rt1). (A.21b)

By replacing −∆I and −∆J in equation (A.21b) by the integrals on the right hand side of the set

of equations (A.19) for which they stand, we produce the following approximation for Ksr′ ,

Ksr′ ≈K(Rt1)−
∫ Re

Rt1

 f̂P(R′) 0

0 sin γχ−Q(R′)

V ′(R′)

 f̂P(R′) 0

0 sin γχ−Q(R′)

dR′

+

∫ Re

Rt1

 f̂P(R′) 0

0 sin γχ−Q(R′)

V ′(R′)

 ĝP(R′) 0

0 cos γχ−Q(R′)

K(Rt1)dR′

+K(Rt1)

∫ Re

Rt1

 ĝP(R′) 0

0 cos γχ−Q(R′)

V ′(R′)

 f̂P(R′) 0

0 sin γχ−Q(R′)

 dR′

−K(Rt1)

∫ Re

Rt1

 ĝP(R′) 0

0 cos γχ−Q(R′)

V ′(R′)

 ĝP(R′) 0

0 cos γχ−Q(R′)

K(Rt1)dR′

(A.22a)

=K(Rt1)−
∫ Re

Rt1

 f̂P(R′)− ĝP(R′)KPP(Rt1) −ĝP(R′)KPQ(Rt1)

−χ−Q(R′) cos γKQP(Rt1) χ−Q(R′) (sin γ − cos γKQQ(Rt1))


T

× V ′(R)

 f̂P(R′)− ĝP(R′)KPP(Rt1) −ĝP(R′)KPQ(Rt1)

−χ−Q(R′) cos γKQP(Rt1) χ−Q(R′) (sin γ − cos γKQQ(Rt1))

dR′. (A.22b)
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From equation (A.22b) we see that this approximation to Ksr′ is symmetric.

To ease the implementation of this approximation to Ksr′ , we approximate K(Rt1) by Ksr

inside the integral on the right hand side of the set of equations (A.22). Even though this approx-

imation may be less accurate than the approximation to Ksr′ in the set of equations (A.22), the

difference is small when K(Rt1) ≈ Ksr. Hence, we identify a physically reasonable perturbation

expansion for Ksr′ in terms of the wave function matrix M̃ (0)(R),

M̃ (0)(R) =

 f̂P(R)− ĝP(R)Ksr
PP −ĝP(R)Ksr

PQ

−χ−Q(R) cos γKsr
QP χ−Q(R)

(
sin γ − cos γKsr

QQ

)
 (A.23)

In terms of M̃ (0)(R′), we write the final approximation to Ksr′ ,

Ksr′ ≈ K(Rt1)−
∫ Re

Rt1

M̃ (0)T (R′)V ′(R′)M̃ (0)(R′)dR′. (A.24)


