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Light is a powerful tool for making observations of the physical world. In particular, light in

the extreme ultraviolet (EUV) and X-ray regimes enable unique and higher resolution measurements

than is possible using longer wavelengths. A relatively new technique called high-order harmonic

generation (HHG) provides a route for scientists to produce light in these useful spectral ranges,

starting with lasers operating at more accessible wavelengths. HHG has been successfully applied

to a number of applications including high resolution microscopy, spectroscopy, and measurements

of magnetism, thermal transport, and molecular structure.

This dissertation covers several illuminating studies of HHG in the temporal and spectral

domains when the process is driven by long wavelength, mid-infrared light. Interestingly, the

characteristics of the harmonic emission are highly dependent on the driving laser parameters

and geometries. As the driving laser wavelength is increased, the harmonic cutoff and bandwidth

naturally broaden, while the emitted pulse train reduces in length until a single isolated burst of

phase-matched harmonics with sub-femtosecond duration is achieved. This trend is experimentally

verified by performing an electric field autocorrelation of the harmonic emission. The resulting HHG

supercontinuum has particular utility in X-ray absorption fine structure spectroscopies, where the

nanoscale lattice structure can be probed. These spectroscopies have been performed on polymer,

scandium, and iron samples using the broadest HHG bandwidths achieved to date, extending up

to 1.6 keV. Pushing this harmonic cutoff further would conventionally require the use of longer

wavelength drivers approaching the far-infrared regime. However, long driving wavelengths can

also result in relativistic effects, resulting in longitudinal Lorentz drifts that could cause the HHG

process to be inhibited. A theoretical accounting of all of the forces involved does not indicate

HHG would be shut off entirely, however, and it is possible for HHG to occur even with driving
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wavelengths beyond 10 µm and harmonic cutoffs in the hard X-ray regime. The use of cylindrical

vector beams or multi-beam geometries can also be used to compensate for relativistic effects, as well

as to create new phase-matching conditions for sum and difference frequency processes. Through

high-order difference frequency generation in a two-beam noncollinear geometry, it is predicted

that the conventional phase-matching limitations could be significantly exceeded, opening up the

possibility to use visible drivers to reach the soft X-ray regime or further. Pushing the limits of the

HHG spectral characteristics would inevitably enable new levels of capability for its applications.

The investigations presented here will follow a progression from shorter to longer wave-

lengths as drivers for the HHG process, starting with experiments using the most commonly used

Ti:sapphire wavelength of 800 nm, moving to 1.3 µm and 2.0 µm, then up to 3.9 µm, and ul-

timately arriving at theory for far-infrared drivers up to 20 µm. Furthermore, the conventional

single-beam driving configuration will be primarily investigated, but new capabilities are predicted

for multi-beam and multi-color geometries, which will be discussed.
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Chapter 1

Introduction to High-Order Harmonic Generation

1.1 Background

Light is an incredibly powerful tool for measurement and excitation. From the casual use

of light by the human eye, to the implementation of X-rays to create shock waves in matter that

can initiate a fusion reaction - light truly is versatile. The various properties of photons - the

fundamental particles that make up light - allow them to be utilized so flexibly. Photons carry

energy and momentum, and they can be superimposed to create electromagnetic fields with arbi-

trary spatial and temporal structure. The polarization and coherence properties of light give it

additional complexity that can be harnessed for a plethora of applications. In particular, laser light

makes use of the coherent nature of photons to create a highly directional beam of light. Through

the process of stimulated emission, lasers take single photons and coherently multiply them many

orders of magnitude, reaching electromagnetic intensities in the laboratory unavailable through any

other means.

Since the first demonstration of the laser by Theodore Maiman in 1960 [77], lasers have found

applications in imaging [156, 153, 126, 150, 84, 127, 131], remote sensing [108, 82], spectroscopy [66,

6, 35, 135], micro-machining [83, 31, 20, 168], nano-lithography [148, 54, 41], particle acceleration

[119, 162, 151, 158], quantum mechanics [5, 80, 113, 114, 86], magnetics [157, 138, 159], fusion

[88, 152], ultra-cold matter [67, 78], thermal transport [91, 133, 52], gravitational research [99, 125],

and more. Each of these applications requires particular laser properties in terms of wavelength

(color), bandwidth (pulse duration), peak and average powers, polarization, and coherence. In
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particular, light in one region of the electromagnetic spectrum (Fig. 1.1) may be suitable for

a particular application, but inappropriate for another. Alternatively, an application might be

able to use of a wide range colors, but the sensitivity or fidelity of the result could be dependent

on the particular wavelength(s) used. For applications that require the coherence of laser light,

the most easily accessible colors are in the infrared and visible regions. The reason behind this

limitation lies in the atomic transition energies of the available materials that can be used in lasers

and amplifiers. Additionally, as the laser wavelength is decreased (toward the ultraviolet regime),

the upper state lifetime of the gain medium reduces. This makes it more difficult to maintain

the population inversion that is required for the laser to operate. As a result, conventional laser

oscillators and amplifiers in the extreme ultraviolet (EUV) and X-ray regions of the spectrum would

require a prohibitively large amount of (fast) supply power. However, there exist several alternative

approaches to generate laser-like beams of EUV and X-ray light: synchrotrons, free-electron lasers

(FELs), and high-order harmonic generation (HHG).

Hair
 Red Cell
 Virus
 DNA
 Molecules
 Atoms


0.1 eV 1 eV 10 eV 100 eV 1 keV 10 keV

10 μm 1 μm 100 nm 10 nm 1 nm 0.1 nm = 1 Å

Near-IR
Mid-IR

Far-IR
Visible

UV
VUV

EUV
Soft X-ray

Hard X-ray

CO2* Ti:sapphOPAPalitra* SHG / THG
Yb/Nd
dopedOP(CP)A SHG / THG

Tm/Ho/Cr
dopedOPCPA SHG / THG

HHG
XFEL

Synchrotron

Sub-ps
Lasers

Class

Figure 1.1: Regimes of the electromagnetic spectrum and regions where ultrafast laser technology
is currently available [56, 171, 97, 65, 47, 139, 111]. ∗The PalitraTM optical parametric amplifier
specifies a broad tunability range for ultrafast operation, but the conversion efficiency for high
energy models is less than 1% for idler wavelengths greater than 2.6 µm [118]. A CO2 amplifier can
be used to boost the idler at 10.6 µm, but at the cost of bandwidth and achievable pulse duration
[104, 101].
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Table 1.1: A comparison of the accessible range of photon energies Eph, pulse duration dt, co-
herence times τcoh, and degree of transverse spatial coherence rcoh/w for HHG, X-ray FEL, and
synchrotron light sources. The values listed are approximate records to date. ∗Achieving ultrashort
pulse durations or high levels of coherence with facility scale sources usually requires pulse-slicing,
bandpass filtering, or spatial filtering, each of which reduce the source brightness. For HHG, tuning
the driving laser wavelength can also be associated with trade-offs.

HHG X-ray FEL Synchrotron

Eph range 0.3 eV - 1.6 keV [161] 0.26 - 25 keV [34] 0.1 eV - > 300 keV [62]
dtmin ∼300 as [18] 100 as [61] 100 fs∗ [13]
τcoh > 1 s [12] 1.5 fs [174] ∼as∗ [62]
rcoh/w > 0.75 [155] 0.45 [174] 0.008 - 0.38 [117]

Synchrotrons and FELs are facility scale sources that are capable of producing very bright

beams of EUV/X-ray light with wavelength tunability and progressively improving levels of co-

herence and temporal duration (see Table 1.1 and Fig. 1.2). Despite the many advantages of

these large-scale sources, their cost and accessibility can be prohibitive in cases. For example,

proposed experiments that have a high level of scientific risk might be denied time on the light

source. If an experiment is approved, the allotted time could be insufficient to perform a thorough

study. Fortunately, HHG is a complementary technology that can provide more opportunities for

experimentation, but at the cost of source brightness and spectral ranges available to date.

High-order harmonic generation describes a frequency conversion technique in which an in-

tense driving laser is focused in a medium, and as a result of the laser-matter interaction, harmonic

frequencies of the driving laser are emitted. In most cases, the HHG medium is a noble gas, but

molecules and solid targets have also been used [48, 116, 173]. At the core of the HHG process

is the coherent nature of the driving laser and the electrons in the target medium, which work

together to produce a highly coherent beam of harmonics. Figure 1.3 depicts HHG from a photon

point of view. A number of effects influence the characteristics of the harmonic output, both on

the microscopic and macroscopic scales. The remainder of Chapter 1 will elaborate on these fun-

damental details behind the HHG process, while the following chapters provide experimental and

theoretical approaches that have been and can be performed to provide insight into the limits of
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Figure 1.2: Plots of the (A) peak brightness and (B) peak power of coherent HHG X-ray sources
(solid lines), compared to X-ray FELs and synchrotron sources (dashed lines). Driving lasers used
for HHG shown in open circles - 3.9 µm, 2.1 µm, 1.5 µm, 0.8 µm, 0.4 µm, 0.27 µm). Data compiled
from [34, 27, 64].



5

HHG technology when driven by mid-infrared laser light.

hνL + hνL + hνL + hνL + hνL + ... 


              =  hνq


Figure 1.3: The photon picture of HHG. The driving laser with fundamental photon energy hνL
contributes q photons to generate a harmonic photon with energy hνq.

Nomenclature

In this dissertation, SI units are used unless otherwise noted. The following physical constants

will be used:

• ε0 is the permittivity of free space (8.854× 10−12 F/m).

• µ0 is the permeability of free space (1.256× 10−6 N/A2).

• e is the natural Euler number (2.718).

• c is the speed of light in free space (2.998× 108 m/s).

• ~ = h
2π is the reduced Planck constant (1.054× 10−34 J · s/rad).

• qe is the charge of the electron (−1.602× 10−19 C).

• me is the mass of the electron (9.109× 10−31 kg, 511 keV ).

• rB is the Bohr radius (5.292× 10−11 m)

• re = 1
4πε0

q2e
mec2

is the classical electron radius (2.818× 10−15 m)
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• Na is the number density of atoms in a gas at standard temperature and pressure (2.687×

1025 m−3).

Additionally, the following formulae will be implied:

• n =
√

εµ
ε0µ0

is the index of refraction of a medium.

• IL = cε0n
2 |EL0|2 is the intensity of a laser field with electric field strength EL0.

• k = 2πn
λ is the wavenumber of an electromagnetic wave with wavelength λ.

• ω = 2πc
λ is the angular frequency of an electromagnetic wave with wavelength λ.

• T = 2π/ω = λ/c is the period of an electromagnetic wave with wavelength λ.

• dt is the duration of a laser pulse, defined as the full width at half maximum (FWHM) of

the intensity profile.

• vφ = ω
k is the phase velocity of an electromagnetic wave through a medium.

• vg = ∂ω
∂k is the group velocity of an electromagnetic wave through a medium.

1.2 Microscopic Picture of HHG

The mechanism that facilitates HHG fundamentally resides at the atomic scale. In HHG,

driving radiation illuminates the atoms in the target medium, and energy is re-radiated by the

electrons bound to the atoms. According to Coulomb’s law, charged particles experience a force in

response to an electric field. Electrons, being 1,837 times less massive than protons, are accelerated

more readily by the oscillating electric field of the illuminating electromagnetic wave. The subse-

quent motion of the electron, an accelerating charged particle, gives rise to re-radiation. However,

for frequency conversion to occur, the system must be nonlinear - that is, the electron must not

simply oscillate at the same frequency as the incident laser field. The Coulomb potential from the

ion allows the electron to take on nonlinear motion, thus facilitating frequency conversion.
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The field of nonlinear optics is rich in processes where spectral/temporal and angular/spatial

characteristics undergo changes, where much of the observed phenomena can be explained using

perturbation theory. However, the spectral trends experimentally observed in HHG do not agree

with perturbative predictions. In the first report on HHG in 1987 [81], the observed harmonic flux

did not simply scale exponentially with harmonic order; there was a plateau at high orders (Fig.

1.4). This indicated a non-perturbative regime of frequency conversion that had not been seen in

lower intensity experiments. A theoretical framework other than perturbation theory was needed

to explain these findings.

In 1993, a semi-classical three step model was proposed to describe the HHG process [26, 60],

and the predictions of that model [68, 70], including the non-perturbative characteristics in the

spectral domain, have held true experimentally. In the three step model, the electron starts bound

to its atom, confined by the atomic Coulomb potential. Then, the electron is subjected to the

electric field of the laser, thus distorting the total potential that it experiences. If the laser field is

intense enough, the electron can tunnel ionize through the distorted Coulomb barrier. Once free of

the short-range potential of the ion, the electron propagates only under the influence of the laser

field. Initially, the electron accelerates away from the ion, but since the laser field is oscillatory,

the electron may reverse direction and return close to the ion. If the electron does re-encounter

the ion, there is a probability for the electron to recombine with it, returning to its ground state

and giving up any excess energy that it might have gained while under the influence of the laser

field. That energy is released in the form of a photon. Thus, the three step model consists of (1)

ionization, (2) propagation, and (3) recombination. Figure 1.5 depicts this process, and the details

behind each step are conveyed in the following sections.

1.2.1 Step 1: Ionization

In the first step of HHG, the electron is liberated from its parent ion by the incident laser

field. This can occur if the electric field strength of the laser approaches the Coulomb field strength

of the ion. In the simplest case, the atomic Coulomb potential experienced by the electron is given
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Figure 1.4: The first reports on HHG, demonstrating perturbative behavior at low harmonic
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efficiency in Ne, demonstrating the shift from perturbative behavior to non-perturbative behavior
at the 11th harmonic. Adapted from [81]. (B) Similar plots showing the ”plateau” and ”cutoff”
for harmonics in Ar, Kr, and Xe. Adapted from [36]. Typical error bars are shown for a single
harmonic.
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Figure 1.5: Diagram of the three step model describing the HHG process. Adapted from [106].
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by:

Vatomic(r) = − q2
e

4πε0r
(1.1)

The electric field of the laser introduces an additional potential felt by the electron:

Vlaser(r, t) = −
∫ r

0
qeEL(r ′, t) · dr ′ (1.2)

where EL(r, t) is the electric field of the laser, which points in a direction ψ̂ corresponding to the

local polarization direction of the laser field 1 . In this section, consider a plane-wave electric field

of the form EL(r, t) = EL0 cos(ωLt)ψ̂. The total potential experienced by the electron is then the

sum of Eq. (1.1) and Eq. (1.2), which may result in one of several ionization possibilities depend-

ing on the strength of EL0: multiphoton ionization, tunneling ionization, and barrier-suppressed

ionization. Each of these are depicted in Fig. 1.6.

Ip

Total Coulomb Potential

Multiphoton Ionization Tunneling Ionization Barrier-Suppressed

Ionization

Figure 1.6: Diagrams indicating the possible mechanisms for ionization under the influence of
intense laser light. The electric field strength of the laser increases from left to right. It is noted
that single-photon ionization is a possibility if the laser photon energy ~ωL is larger than the
ionization potential Ip of the atom, which is not considered here.

The parameters that determine the particular ionization regime are inherent to the laser

characteristics and the atomic ionization potential, as described by Keldysh [55]. In particular,

Keldysh introduced a single parameter that relates the ionization potential to the laser pondero-

1 The local polarization direction may vary as a function of time, as in the case of elliptically polarized light.
Furthermore, the polarization of the laser mode can vary spatially (e.g. cylindrical vector beams). The local field
polarization at the location of the atom is of primary importance for the microscopic picture of HHG.
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motive potential, dubbed the Keldysh adiabatic parameter γKeldysh:

γKeldysh =

√
Ip

2Up
(1.3)

where Up is the ponderomotive potential of the laser field:

Up =
q2
eE

2
L0

4meω2
L

(1.4)

The three regimes of ionization can be determined through γKeldysh according to the following:

• γKeldysh >> 1, Multiphoton Ionization: The laser ponderomotive potential Up is much

smaller than the ionization potential Ip of the atom, thus distorting the total Coulomb

potential to a small degree. Only the perturbative mechanism of multiphoton ionization

can liberate the electron from its potential well, in which N photons from the driving

field impart the sum of their energies to the electron, liberating it from the potential well

(N · ~ωL ≥ Ip). The ionization rate in this regime scales perturbatively as INL [172].

• γKeldysh < 1, Tunneling Ionization: Up approaches Ip, significantly distorting the Coulomb

well and creating a finite barrier through which a portion of the electron wavefunction can

tunnel. Only a portion of the electron wavefunction escapes the ion’s Coulomb potential,

while the remainder stays in a bound state. The ionization rate in this regime is related

to the proportion of the wavefunction that tunnels and can be modeled using Ammosov-

Delone-Krainov (ADK) theory [4], discussed later in this section.

• γKeldysh << 1, Barrier-Suppressed Ionization: Up greatly exceeds Ip, completely sup-

pressing the Coulomb barrier that originally confined the electron. The electron leaks away

from the ion directly into continuum states, rapidly accelerating due to the strong laser

field. The ionization rate in this regime can be large enough to completely populate the

ion species within a few cycles of the driving laser.

Tunneling ionization is the relevant regime for the purposes of HHG, as will be evident by the

discussion in Sections 1.3 and 1.4.
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Keldysh calculated the ionization rate ωKeldysh for the hydrogen atom in the quasi-static

limit [55], which was later extended to more complex atoms and electronic states by Ammosov,

Delone and Krainov. The resulting ADK ionization rate ωADK of an atom or ion can be calculated

using the following equations in atomic units (adapted from [4]):

n∗ =
Z̄q2

e

~

√
me

2E0
(1.5)

βADK =
2(2E0)3/2

3
(1.6)

αADK =
E0

2πn∗
(2l + 1)(l + |m|)!
2|m||m|!(l − |m|)!

(
2e

n∗

)2n∗

(3βADK)2n∗−|m−1| (1.7)

ωADK(t) = αADKE(t)1+|m|−2n∗exp

[
−βADK
E(t)

]
∗ FBS(t) (1.8)

where in au, ~ = 1, me = 1, and qe = 1 (not to be confused with e, the natural Euler number). Z̄

is the charge state of the resulting ion, E0 is the ionization potential of the atom/ion (in hartree), l

and m are the orbital quantum number and its projection for the electron being ionized, E(t) is the

electric field strength of the laser (in au), and FBS is a modification factor that must be included

when the barrier-suppression regime is approached (γKeldysh << 1) [163]:

FBS(t) = exp

[
−αBS

Z̄2

E0

E(t)

(2E0)3/2

]
(1.9)

where αBS is a fitting parameter used by Tong and Lin in [163] to match calculated ionization rates

in the barrier-suppressed regime using the single-active electron approximation (see Table 1.2 for

values of αBS). Without FBS , the ADK ionization formula would overestimate the ionization rate

in the barrier-suppressed regime and would therefore only be valid in the tunneling regime. The

addition of FBS maintains the simplicity of the ADK formulation while extending the applicable

range of the model.

Equation (1.8) represents the instantaneous ionization rate of the atomic or ionic medium

by the laser. For the case of neutral atoms being singly-ionized to the first ionic state, the time-
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Table 1.2: Some values of the fitting parameter αBS for various atomic and ionic species, including
critical field strengths Ecr and ionization potentials E0 (in au). Adapted from Table 2 in [163].

Rb H He Ar Ar+ Ne Ne+

αBS 6.0 6.0 6.0 9.0 8.0 9.0 8.0
Ecr 0.006 0.063 0.204 0.084 0.129 0.157 0.285
E0 0.154 0.500 0.904 0.579 1.016 0.793 1.506

dependent ionization population fraction ηADK(t) can be simply calculated through integration:

ηADK(t) = 1− exp
[
−
∫ t

−∞
ωADK(τ)dτ

]
(1.10)

For media that become multiply-ionized by a single laser pulse, one must use a more complex

calculation that accounts for the simultaneous population and depopulation of each ionic species.

To approach the multiple-ionization case, we define η0(t) as the time-dependent population of

neutral atoms, while ηi(t) represents the population of ion species i. The rate at which electrons

are ionized from species i − 1 into species i is given by ωi(t) (each of which will depend on the

ith ionization potential Ei, the particular electron’s quantum numbers l and m, and the resulting

charge state Z̄). The neutral atom population can be calculated simply from the rate at which the

first ionization species becomes populated:

η0(t) = exp

[
−
∫ t

−∞
ω1(τ)dτ

]
(1.11)

Thus, the neutral population starts at unity and decreases as electrons are removed to populate the

singly-ionized state η1(t). However, the population and depopulation of the first ionization species

is more complicated since it depends not only on transitions from the neutral species, but also on

transitions into the second ionization species. For the first ionization species, the population is

given by an adjusted form of Eq.(1.10):

η1(t) = [1− η0(t)] exp

[
−
∫ t

−∞
ω2(τ)dτ

]
(1.12)
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For an arbitrary species i, this equation can be generalized:

ηi(t) =

[
1−

i∑
k=1

ηi−k(t)

]
exp

[
−
∫ t

−∞
ωi+1(τ)dτ

]
(1.13)

This formula is self-referencing, since the definition needs to be re-implemented to solve for each

ηi−k(t) until the neutral state (i = k) is reached. In other words, to solve for η5(t), it is first necessary

to solve for η4(t), and so on. The total ionization population fraction ηtot(t) =
∑Zatom

i=1 i ∗ ηi(t) can

also exceed 100%, indicating more free electrons than ions in the resulting plasma.

1.2.2 Step 2: Propagation

Once the electron is ionized, it quickly escapes the short-range potential of the ion (several

rB) whereupon the laser potential dominates. The motion of the electron following ionization can

be classically modeled. Using a z-propagating plane-wave for the laser field with a polarization

direction along the y-axis, the electric field is:

EL(r, t) = EL0 cos(ωLt− kz + φ0)ŷ (1.14)

where φ0 is the phase of the field at the time of ionization. The magnetic component of the laser

field takes on a similar form:

BL(r, t) = −EL0

c
cos(ωLt− kz + φ0)x̂ (1.15)

As a result, the Lorentz force governing the motion of the ionized electron is:

F (t) =
dp(t)

dt
= qe [EL(t) + v(t)×BL(t)] = qeEL0

[
ŷ − v(t)

c
× x̂

]
cos(ωLt− kz + φ0) (1.16)

The non-relativistic (|v(t)| << c) equations of motion at z = 0 are then:

a(t) =
qe
me

EL0

[
ŷ − v(t)

c
× x̂

]
cos(ωLt+ φ0)

∼=
qe
me

EL0 cos(ωLt+ φ0)ŷ

(1.17)

v(t) ∼=
qe

meωL
EL0[sin(ωLt+ φ0)− sin(φ0)]ŷ + v0 (1.18)



15

Ar
Ar+

ηtot = 7.63%
-20 -10 0 10 20

90%

92.5%

95%

97.5%

100%

0%

2.5%

5%

7.5%

10%

Time (fs)

ηAr

Tunnel ionization of Ar

ηAr+

Ar Ar+
Ar2+

Ar3+

ηtot = 222%
-20 -10 0 10 20

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Time (fs)

η

Multiple-ionization of ArB 

A 

Figure 1.7: Ionization populations for different ion species of Ar plotted as a function of time. The
driving laser pulse (shown in gray) has a wavelength of 1 µm and an 8-cycle pulse duration. (A)
The low intensity case (IL = 1.8× 1014 W/cm2, γKeldysh = 0.69, E/Ecr = 0.85) where Ar becomes
lightly tunnel-ionized; relevant for HHG from atoms. (B) The high intensity case (IL = 3.0× 1015

W/cm2, γKeldysh = 0.17, E/Ecr = 3.5) where Ar becomes multiply-ionized in the barrier-suppressed
regime; relevant for HHG from ion species [134].
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x(t) ∼= −
qe

meω2
L

EL0[cos(ωLt+ φ0) + ωL sin(φ0)t− cos(φ0)]ŷ + v0t+ x0 (1.19)

Typically, the initial displacement of the electron x0 is assumed to be small (i.e. zero), but the

initial velocity v0 can be nonzero depending on the initial momentum state of the electron before

ionization. Note that in the above derivation, the magnetic component of the Lorentz force (which

would tend to accelerate the electron in the +z direction) was assumed to be negligible due to the

non-relativistic assumption. In cases where the electron velocity becomes comparable to the speed

of light, this component cannot be ignored, as will be discussed in Chapter 4. However, for the

purposes of recollision processes like HHG, the non-relativistic assumption is semi-classically valid

for laser intensities < 1015 W/cm2 and wavelengths < 5 µm.

For the following analyses, assume the electron starts at rest at the origin. Its trajectory can

be plotted for a variety of ionization phases φ0, as shown in Fig. 1.8. Only ionization phases within

[0, π/2) give trajectories that return to the origin, leading to recollisions.

-π/4
-π/10

ϕ0 = 0
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ωL
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( ) × 

Figure 1.8: Electron trajectories for a variety of ionization phases. The electron returns to its
starting position only for φ0 ∈ [0, π/2).

For returning trajectories, the amount of time the electron spends away from the ion (τf )
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cannot be exactly solved for all values of φ0, since setting Eq. (1.19) to zero forms a transcendental

equation with only the trivial solution t = 0. Of course, numerical methods may be used. However,

for the special case of φ0 = 0, the exact solution is easily calculated to be τf = λ/c = T , the laser

period. Additionally, for φ0 = π/2, the solution is τf = 0. Approximate solutions can be found for

ionization phases close to 0 and π/2 (i.e. φ0 = ε and φ0 = π/2 − ε, where ε is small). In these

regimes, the sinusoidal terms may be Taylor expanded. Keeping only the first two terms in the

expansions for sine and cosine gives an equation with orders up to ε3, which yields the following

approximate forms for τf (φ0):

τf (φ0 <π/30) ∼=
12π − φ3

0 −
√
φ6

0 − 24πφ0(φ2
0 − 6)

12π
T

τf (φ0 >π/3) ∼=
3(π/2− φ0)

2π
T

(1.20)

These approximations are valid with less than 1% error for the phase ranges listed, as evidenced

by their plots compared to the numerical solution for τf (φ0) shown in Fig. 1.9. Note that Taylor

expanding out to the first three terms of the sinusoidal functions (orders up to ε5) yields a much

more complicated solution that partially extends the phase ranges where the approximations are

valid, but does not impart any additional scientific insight.

With τf solved for, the electron’s velocity at the time of recollision can be calculated by

inserting the values of φ0 and τf (φ0) into Eq. (1.18). The kinetic energy of the electron at

recollision is then:

Ekinetic(τf ) =
me|v(τf )|2

2
= 2Up [sin(ωLτf (φ0) + φ0)− sin(φ0)]2 (1.21)

where the ponderomotive potential Up from Eq. (1.4) was substituted. Equation (1.21) is plotted

in Fig. 1.10, showing a maximum value 2 of 3.17Up for an electron ionized around φ0 ≈ π/10. This

phase marks a division between electron trajectories labeled ”long” (0 < φ0 < π/10) and ”short”

(π/10 < φ0 < π/2), simply due to the relative duration of their excursions with respect to the

peak energy scenario. Long and short trajectories do result in different quantum and macroscopic

physics, as will be discussed in Sections 1.3 and 1.4.

2 The electron can achieve a kinetic energy > 3.17Up during its trajectory (up to 8Up if φ0 ≈ ±π/2), but the
electron is far from its parent ion when it achieves these higher energies.



18

π/3π/30

0 π/16 π/8 3π/16 π/4 5π/16 3π/8 7π/16 π/2
0

0.2

0.4

0.6

0.8

1

ϕ0

τf

T

Electron return time

Figure 1.9: The amount of time τf an electron spends away from the ion before returning to
its starting position, plotted as a function of ionization phase φ0. Only phases within [0, π/2) are
considered since all other phases result in non-returning trajectories. The solid black line is the
numerical solution, while the solid red and blue lines represent the approximate solutions from Eq.
(1.20). The shaded regions indicate the phases where the approximate solutions have less than 1%
error.
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Figure 1.10: The kinetic energy Ekinetic of the recolliding electron, plotted as a function of
ionization phase φ0. A maximum value of 3.17Up occurs for φ0 ≈ π/10. Electrons ionized before
this phase (long trajectories) and those ionized after this phase (short trajectories) have reduced
energy upon recollision.
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At the time of recollision, the electron can recombine with the ion and enter the ground

state, causing it to release its kinetic energy combined with the ionization potential Ip of the atom,

leading to the HHG single-atom cutoff energy rule:

ESAC = Ip + 3.17Up (1.22)

This key equation results from a purely classical analysis of the electron’s motion following ioniza-

tion, and it represents the highest photon energy that can be emitted via the HHG process from a

single atom under monochromatic, linearly-polarized illumination.

Note that the above calculations assumed the electron started at rest. Had the electron been

ionized with residual momentum from its bound state, its motion would be identical except with a

linear drift in time. This drift points in the direction of v0, which can result in electrons returning

to the origin for ionization phases outside φ0 ∈ [0, π/2) if v0 ‖ ŷ, the polarization direction.

Furthermore, there exist alternative driving field configurations that allow the electron to take

returning trajectories, such as bichromatic, bicircular driving fields used to produce circularly-

polarized harmonics [154, 130, 129, 128].

1.2.3 Step 3: Recombination

As described in the previous section, the recombination step provides the mechanism for the

electron to release its kinetic energy through photon emission. Whether or not a photon is released

depends on a number of factors. The following must occur:

(1) Ionization of the electron must occur.

(2) The electron must return to the vicinity of its parent ion.

(3) Upon recollision with the ion, the electron must recombine with the ion, re-entering the

ground state.

The first two items have been discussed in this semi-classical analysis, but the recombination

pathway is only one of several options that the electron can take. In general, a recollision can also
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result in:

• Above-threshold ionization: The electron absorbs more photons than necessary to be-

come ionized, leaving it in a continuum state with non-zero kinetic energy [3, 9, 32].

• Elastic backscattering: The ionized electron recollides with the ion, scattering elastically

backward and leaving the system as an energetic free electron [95].

• Inelastic excitation: The ionized electron recollides with the ion and imparts some of its

kinetic energy to a remaining bound electron by scattering inelastically, thus exciting the

bound electron to an excited state [29].

• Non-sequential double ionization: The ionized electron recollides with the ion at high

energy, imparting > Ip of its energy to a bound electron such that the second electron also

becomes ionized [75, 39].

Figure 1.11 depicts each of these processes in addition to the HHG pathway. The cross sections

for each of these processes vary; for HHG, a quantum mechanical treatment is required and will be

presented in Section 1.3. Should the electron take the HHG pathway and recombine with ion, its

total energy changes:

Etot,0 = Ekinetic,0 + ���
0

V0 −→ Etot,f = −Ip (1.23)

which leads to the emission of a photon with energy Eph = −(Etot,f −Etot,0), limited by the single

atom cutoff energy, presented in Eq. (1.22). Some ionization potentials are listed in au as E0 in

Table 1.2, and in electron-volts as Ip in Table 1.3.

1.2.4 Characteristics of Microscopic HHG Emission

The harmonic emission that results from the HHG three step process has properties and

limitations that are inherent to the microscopic picture. Already, a spectral limitation for HHG

has been presented through the derivation of the single-atom cutoff energy described in Eq. (1.22).
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Figure 1.11: Several processes observed in electron-ion recollisions following ionization. Only HHG
results in photon emission, while all other processes result in one or more free electrons and an ion
species. In the figure, τ0 and τf refer to the times when the electron is born and when it returns
to the ion, respectively. Adapted from [19].

Table 1.3: Ionization potentials Ip (in eV) for various gases and their ionic species. Data obtained
from [71]. Ionization potentials beyond first ionization can be important for HHG from ions, as
demonstrated in [134].

Ip (eV)

X→X+ X+→X2+ X2+→X3+ X3+→X4+ X4+→X5+ X5+→X6+ X6+→X7+

H 13.6
He 24.59 54.42
Ne 21.56 40.96 63.45 97.11 126.21 157.93 207.26
Ar 15.76 27.63 40.74 59.81 75.04 91.01 124.4
Kr 14.00 24.36 36.95 52.5 64.7 78.5 111
Xe 12.13 21.21 32.1 46 57 82 100
N 14.53 29.60 47.45 77.47 97.89 552.06 667.03
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In essence, the maximum harmonic energy achievable from HHG is determined by the ionization

potential of the medium as well as the driving laser’s intensity and wavelength. An additional

property in the spectral domain is the scaling of harmonic flux with harmonic order; at low orders,

the exponential scaling typical of perturbative effects is observed, but at large orders, there is non-

perturbative behavior indicated by the plateau of harmonics extending to the cutoff energy (Fig.

1.4). Only the three step model of HHG explains these qualities.

With regards to the time domain, only the electron motion has been discussed. However,

the electron is at the core of the HHG process, and the harmonic output is therefore dependent

on its behavior. In particular, harmonic emission occurs at the time the electron recombines with

its parent ion - some time after the electron is first ionized. If the electron is ionized at a phase

φ0 ∈ [0, π/2), then it will recombine and emit a photon at a later phase φf ∈ (π/2, 2π]. Take note

that the laser field amplitude is periodic, such that the non-relativistic 3 physics that takes place

within a given half-cycle should be repeated for the following half-cycle, except with a change of

sign. This necessarily results in the possibility of harmonic emission occurring every half-cycle of

the driving laser field. For an ensemble of emitters, the averaged microscopic result would be a

pulse train of harmonics with temporal spacing λ
2c . This pulse train would last for the duration

dt of the driving laser, while the intensity is large enough to tunnel ionize (γKeldysh < 1) and the

ionization level remains unsaturated (ηADK < 1). Each individual harmonic pulse would have a

duration less than a half-cycle of the driving field (dtHHG <
λ
2c).

The λ
2c periodicity of the harmonic pulses in the time domain generates interferences in

the spectral domain. Without the interferences (i.e. considering the emission from only a single

half-cycle) the HHG spectrum would be a broad supercontinuum extending from the fundamental

frequency ωL to the single-atom cutoff energy (many harmonic orders higher). With the interference

from the neighboring pulses, however, the supercontinuum becomes modulated with peaks occurring

at every odd harmonic of the fundamental. The separation of 2ωL between each peak is a direct

3 Note that for relativistic cases ignored in Section 1.2, the half-cyclic symmetry can be broken. These cases will
be investigated in Chapter 4
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result of the λ
2c periodicity in the time domain. The peaks occur at every odd harmonic (as opposed

to every even harmonic) due to the relative phases of each pulse in the harmonic pulse train. The

emission from electrons ionized during an up half-cycle - φ0 ∈ [0, π/2) - is followed by emission

from electrons ionized during a down half-cycle - φ0 ∈ [π, 3π/2). The opposing signs of the fields

and trajectories result in a π phase shift between neighboring harmonic pulses, which in turn

results in the odd harmonics that are observed experimentally. Figure 1.12 provides a qualitative

depiction of these phenomena, while Fig. 1.13 contains measured data of HHG in the time and

frequency domains. The spectral and temporal characteristics of HHG can be modified either

through breaking of the half-cycle symmetries, or through adjusting the driving laser waveform in

the time domain. For instance, emission of an isolated harmonic pulse is possible by driving HHG

with a single-cycle laser pulse (dt ≈ λ/c) [22, 140, 137].

Another important property of the harmonic beam in the time domain is the chirp rate of

each pulse. As a result of the three step model, electrons ionized at different times within the

pulse will recombine at different times and emit harmonics of different energies. From the analyses

performed in Section 1.2.2, the spectral phase (and thus the various orders of chirp/dispersion)

can be calculated. Dispersive orders tend to increase the duration of a pulse, thus imposing a

limitation on the pulse duration achievable via HHG without using compression techniques (which

can be difficult and inefficient in the EUV and soft X-ray regimes). Figure 1.14 contains plots of

the group delay dispersion (GDD = d2φ
dω2 ) and third-order dispersion (TOD = d3φ

dω3 ). The GDD has

the largest effect on the pulse duration, while higher orders can be largely neglected.

Finally, the spatial and angular characteristics of the harmonic emission can also be deduced

from the electron motion. In this microscopic picture, the size of the photon source would obviously

be no larger than the size of the atom. As for the direction of photon emission, the electron’s

acceleration vector gives a clue. Accelerating charged particles radiate light, according to the

Larmor formulation:

dP (t)

dΩ
=

q2
e

4πc

sin2(θ)a2(t)

c2
(1.24)
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Figure 1.12: Plots of the qualitative characteristics of HHG in the time and frequency domains.
The spacing of the pulses in time result in a 2ωL spacing of peaks in the spectrum. The absolute
positions of the spectral peaks is governed by the relative phases of neighboring pulses in the time
domain. Odd harmonics are naturally generated for non-relativistic HHG using monochromatic
drivers.
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Figure 1.13: Plots of the measured signal in the time and frequency domains for HHG driven by
λ = 2 µm at low intensity and transmitted through an Al filter. An electric field autocorrelation
of the HHG pulse train is presented for the time domain, whose Fourier transform directly gives
the spectrum (Chapter 2, [18]). Attosecond streaking methods are otherwise required to indirectly
measure the HHG pulse train, as opposed to its autocorrelation [144]. Note that macroscopic effects
(Section 1.4) apply here.
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Figure 1.14: Plots showing the dispersion of natural HHG emission. (A) A plot of the energy of the
emitted photon for an electron returning to the ion at a final time tf , corresponding to a final phase
φf . (B) and (C) Plots of the normalized group delay dispersion (GDD) and third-order dispersion
(TOD) that result from the three step model of HHG. These are used in Taylor expansions for the
spectral phase, and tend to increase the durations of the harmonic pulses unless compensated for
through compression techniques. Note that the atom’s ionization potential has no effect on the
microscopic dispersion, but would only shift the curves uniformly along the energy axis.
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P (t) =
2

3

q2
ea

2(t)

c3
(1.25)

Here, θ is the angle between the acceleration and observation vectors. Equation (1.17) gives the

acceleration of the electron, but under the influence of the driving laser field only, which would

result in the electron radiating at the same fundamental frequency. It is the recollision with the

ion that causes the electron to radiate at higher frequencies, so it is the impulsive acceleration

upon recombination that must be considered. In terms of quantitave power radiated, the classical

acceleration upon recollision is difficult to calculate, since the rate at which the electron stops to

recombine is not readily deduced. Scattering theory can be used, but gives a result that is highly

dependent on the impact parameter. The quantum mechanical treatment in Section 1.3 provides

a more intuitive and straightforward calculation for the quantitative power radiated. Fortunately,

the qualitative direction of the acceleration upon recollision is obvious, and therefore the emission

pattern would follow the sin2(θ) scaling in Eq. (1.24), with θ being the angle measured from the

ŷ-direction. For a single atom, the harmonic emission is brightest in the x-z plane, while there is

zero emission along the ŷ direction. Figure 1.15 depicts this microscopic radiation pattern. Despite

the broad angular distribution for single atom radiation, macroscopic effects reduce the total beam

divergence (see Section 1.4).

1.3 Quantum Mechanical Picture of HHG

The semi-classical analysis of microscopic HHG presented in Section 1.2 is a valid approach

to derive the primary characteristics of the harmonic emission. A quantum approach should yield

the same physical conclusions, but can give deeper insight into the process from the viewpoint of

the electron wavefunction. Ensemble averages, which are relevant to realistic laboratory conditions

with many atoms, can be derived directly from the quantum perspective.
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Figure 1.15: Depiction of the Larmor radiation pattern following the sin2(θ) scaling from Eq.
(1.24). The power is primarily radiated along the x-z plane, with zero emission directly along
ŷ. Microscopically, HHG would be emitted with this broad angular distribution, but macroscopic
effects enhance the emission along the laser propagation direction k ‖ ẑ.



29

1.3.1 The Quantum Three Step Model

The quantum derivation for the three step model is found in [68] and is reproduced here. The

general approach is to solve the time-dependent Schrödinger equation while treating the electron’s

wavefunction as a sum of the bound state and ionized states in the continuum. By solving for the

continuum states, the dipole radiation at the time of recombination can be solved for.

The electron’s wavefunction obeys the time-dependent Schrödinger equation:

i~
∂ |Ψ(r, t)〉

∂t
=

[
−~2

2me
∇2 + V (r, t)

]
|Ψ(r, t)〉 , (1.26)

where |Ψ(r, t)〉 = e−iEt/~ |ψ(r)〉 is the electron’s wavefunction, and V (r, t) is the total potential

experienced by the electron. |ψ(r)〉 satisfies the time-independent Schrödinger equation:[
−~2

2me
∇2 + V (r, t)

]
|ψ(r)〉 = E |ψ(r)〉 (1.27)

Prior to the laser field, the electron is in the atomic ground state |ψ(r)〉 = |0〉 with energy E0 = −Ip,

confined by only the atomic Coulomb potential Vatomic(r), which in the simplest case is given by

Eq. (1.1).

In the presence of the laser field, an additional potential arises. For a linearly-polarized laser

field aligned along the ŷ direction:

Vlaser(r, t) = −qeEL0 cos(ωLt) y (1.28)

The time-dependent Schrödinger equation then becomes:

i~
∂ |Ψ(r, t)〉

∂t
=

[
−~2

2me
∇2 + Vatomic(r, t)− qeEL0 cos(ωLt) y

]
|Ψ(r, t)〉 (1.29)

At this point, the following assumptions are necessary to proceed:

(1) Only the |0〉 bound state contributes to the the evolution of the atomic system, while all

other states’ contributions are neglected.

(2) The depletion of the |0〉 state is ignored, indicating ionization fractions η << 1.
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(3) Once the electron ionizes to a continuum state |p〉, the short-range atomic potential Vatomic(r)

no longer acts on it (strong-field approximation).

The validity of the assumptions are generally good for Keldysh parameters γKeldysh < 1, but for

intensities less than the saturation intensity. Note that the continuum states satisfy Eq. (1.26)

with the form:

|Ψp〉 = e−iEpt/~ |p〉 = Aei(k·r−ωpt) = Aei(p·r−EP t)/~, (1.30)

where p = mev is the momentum of the electron, Ep = p2

2me
is its energy, k = p

~ = 2π
λD
v̂ is its

wavevector, λD is the DeBroglie wavelength, and ωp =
Ep
~ = ~k2

2me
= πv

λD
.

With the assumptions, the total wavefunction of the electron can be decomposed into bound

and continuum components as follows:

|Ψ(r, t)〉 = eiIpt/~
[
a(t) |0〉+

∫
d3p b(p, t) |p〉

]
(1.31)

where a(t) represents the time-dependent proportion of the wavefunction that stays in the ground

state, and b(p, t) represents the proportion that ionizes and enters the continuum state with mo-

mentum p. 4 Note that the phase eiIpt/~ is factored, shifting the energy of the ground state |0〉 to

zero and the energy of the continuum states up to p2

2me
+ Ip. Ignoring the ground state depletion

a(t) ∼= 1, the left-hand side of the time-dependent Schrödinger equation becomes:

i~
∂

∂t
|Ψ(r, t)〉 = −Ip |Ψ(r, t)〉+ i~eiIpt/~

∫
d3p ḃ(p, t) |p〉 (1.32)

With the substitution of Eq. (1.31) and using the fact that the atomic potential Vatomic(r) acting

on the phase-shifted continuum states results in −Ip |p〉, the right-hand side of the time-dependent

Schrödinger equation is:

H |Ψ(r, t)〉 =− Ip |Ψ(r, t)〉 − eiIpt/~qeEL0 cos(ωLt) y a(t) |0〉

+ eiIpt/~
∫
d3p

(
p2

2me
+ Ip

)
b(p, t) |p〉

− eiIpt/~qeEL0 cos(ωLt) y

∫
d3p b(p, t) |p〉

(1.33)

4 Here, a(t) is unitless, while b(p, t) has units of
[
p−3
]
.
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Putting together the two sides of the time-dependent Schrödinger equation results in the can-

cellation of the terms −Ip |Ψ(r, t)〉 and eiIpt/~. Additionally, the y operator can be expressed in

momentum space as i~ ∂
∂py

. The result is:

i~
∫
d3p ḃ(p, t) |p〉 =− qeEL0 cos(ωLt) y a(t) |0〉

+

∫
d3p

(
p2

2me
+ Ip

)
b(p, t) |p〉

− i~qeEL0 cos(ωLt)

∫
d3p

∂

∂py
b(p, t) |p〉

(1.34)

Multiplying both sides of the equation by 5
∫
d3p′ 〈p′|:

i~ḃ(p, t) =− 〈p| qeEL0 cos(ωLt) y |0〉+

(
p2

2me
+ Ip

)
b(p, t)

− i~qeEL0 cos(ωLt)

∫
d3p′ 〈p′| ∂

∂py
b(p, t) |p〉

(1.35)

The product rule is needed for the last term, resulting in:∫
d3p′ 〈p′| ∂

∂py
b(p, t) |p〉 =

∂b(p, t)

∂py

∫
d3p′ 〈p′|p〉

+ b(p, t)

∫
d3p′ 〈p′| ∂

∂py
|p〉

(1.36)

From Eq. (1.30), the derivative of |p〉 with respect to py causes the second term’s integrand to be

odd, resulting in zero for the integral. Finally, the time-dependent Schrödinger equation for b(p, t)

takes the form of the Volkov equation:

ḃ(p, t) = − i
~

(
p2

2me
+ Ip

)
b(p, t)− qeEL0 cos(ωLt)

∂b(p, t)

∂py
+
i

~
qeEL0 cos(ωLt) 〈p| y |0〉 (1.37)

Note that the term 〈p| y |0〉 = dy(p) is the atomic dipole matrix element for the bound-free tran-

sition parallel to the polarization axis ŷ. The Volkov equation can be solved exactly using the

electromagnetic vector potential, which takes the following form for this electric field in the radia-

tion gauge
(
E(t) = −dA(t)

dt

)
:

A(t) =


0

−EL0
ωL

sin(ωLt)

0

 (1.38)

5 Here, we implicitly assume there is an additional factor with amplitude 1 containing units of
[
p−3
]
. This

implicit factor will disappear when integrals over d3p collapse, but would remain for the first term in Eq. (1.35) and
its eventual conversion to dy(p), which persists through the calculation.
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With the substitution for the canonical momentum (p̄ = p+ qeA(t) = mev+ qeA(t)), the solution

for b(p̄, t) is then:

b(p̄, t) =
i

~

∫ t

0
dt′qeEL0 cos(ωLt

′) dy(p̄− qeA(t′)) e−iS(p̄,t,t′) (1.39)

where the integral begins at time t = 0 (corresponding to the peak of the driving electric field),

and S(p̄, t, t′) is the semi-classical action:

S(p̄, t, t′) =
1

~

∫ t

t′
dt′′
[

(p̄− qeA(t′′))2

2me
+ Ip

]
(1.40)

At this point in the derivation, we have arrived at a closed form solution for the continuum

state amplitudes as a function of time. Recall that the goal of the derivation is to arrive at an

equation for the harmonic dipole emission upon recombination. The harmonic electric field will be

proportional to the second time-derivative of the dipole:

〈Ψ(r, t)| y |Ψ(r, t)〉 = 〈0| y |0〉+

∫
d3p d3p′ b∗(p′, t) 〈p′| yb(p, t) |p〉

+

∫
d3p 〈0| yb(p, t) |p〉

+

∫
d3p b∗(p, t) 〈p| y |0〉

(1.41)

The first term contains an odd integrand and is therefore zero. The second term concerns transitions

between continuum states, which do not contribute to the harmonic emission. The remaining terms

are complex conjugates of each other. The component of the dipole that concerns harmonic emission

can therefore be written as:

χ(t) =

∫
d3p b∗(p, t) 〈p| y |0〉+ c.c. =

∫
d3p b(p, t)dy(p) + c.c. (1.42)

Substituting b(p̄, t) from Eq. (1.39) 6 :

χ(t) =
i

~

∫ t

0
dt′
∫
d3p̄ qeEL0 cos(ωLt

′) dy(p̄− qeA(t′)) e−iS(p̄,t,t′) d∗y(p̄− qeA(t)) + c.c. (1.43)

Equation (1.43) can be physically interpreted in terms of probability amplitudes corresponding to

each component of the three-step model. First, the electron is ionized at time t′ from a bound

6 Recall b(p̄, t) contains an implicit factor with units
[
p−3
]
, which carries into χ(t).
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state into a continuum state with a probability amplitude: EL0 cos(ωLt)dy(p̄− qeA(t′)). Following

ionization, the free electron propagates in the laser field with a constant canonical momentum p̄,

acquiring a phase equal to the quasi-classical action: e−iS(p̄,t,t′). Finally, the electron recombines

with the ion at time t, transitioning from a continuum state to the bound state with a probability

amplitude: d∗y(p̄ − qeA(t)). Note that Eq. (1.43) can be extended to arbitrary polarization and

temporal shape. For an electric field of the form EL(t), the dipole moment along direction n̂ is:

χ(t) =
i

~

∫ t

0
dt′
∫
d3p̄ qeEL(t′) · d(p̄− qeA(t′)) n̂ · d∗(p̄− qeA(t)) e−iS(p̄,t,t′) + c.c. (1.44)

The dipole moment contains an integral over the canonical momentum where the terms in

the integrand oscillate rapidly for many values of p̄. Because the term e−iS(p̄,t,t′) oscillates most

rapidly, the integral averages to zero except in regions where ∇p̄S(p̄, t, t′) ∼= 0 (which can also be

stated as x(t) − x(t′) ∼= 0; i.e. only electrons with trajectories that return to the ion contribute

to HHG). Therefore, the result of the integration can be approximated by finding the stationary

phases p̄s of S(p̄) and Taylor expanding about them:

S(p̄) ∼= S(p̄s) +
1

2
∇2
p̄S|p̄s(p̄− p̄s)2, (1.45)

where p̄s satisfies ∇p̄S(p̄s, t, t
′) = 0 →

∫ t
t′ dt

′′(p̄s − qeA(t′′)) = 0. Lumping together the other

terms in the integrand as F (p̄), and recognizing that F (p̄) varies slowly compared to S(p̄), the

integral over the momentum becomes:

F (p̄s)e
−iS(p̄s)

∫
d3p̄ exp

[
− i

2
∇2
p̄S|p̄s(p̄− p̄s)2

]
(1.46)

This integral is separable into integrals over the three Cartesian directions, each of which can be

solved using the same substitution πξ2/2 = ∇2
p̄S|p̄s(p̄x − p̄s,x)2. Equation (1.46) then takes the

following form:

F (p̄s)e
−iS(p̄s)

(
π

∇2
p̄S|p̄s

)3/2 [∫ ∞
−∞

dξ exp
(
−iπξ2/2

)]3

(1.47)

which contains a Fresnel-type integral with solution
∫∞
−∞ dx (cos(πx2/2) − i sin(πx2/2)) = i

√
i.
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Also noting that ∇2
p̄S|p̄s = (t−t′)

me~ =
τf
me~ , the dipole moment finally becomes 7 :

χ(t) =
1

~

∫ t

0
dt′
(
iπme~
τf

)3/2

qeEL(t′) · d(p̄s − qeA(t′))

× n̂ · d∗(p̄s − qeA(t)) e−iS(p̄s,t,t′) + c.c.

(1.48)

Calculating qeχ̈(t) will give the harmonic electric field in the time domain, which when Fourier

transformed will result in the HHG spectrum. The emission amplitude into the N th harmonic with

frequency NωL can be calculated by performing the integral
∫∞
−∞ dt qeχ̈(t)e−iNωLt.

Every half-cycle of the driving laser contains two stationary phases p̄s corresponding to the

long and short electron trajectories, both of which should be considered for the total harmonic

dipole emission from a single atom. 8 For an electron ionized at time t′ and returning at time

t = t′ + τf , the stationary value of the canonical momentum along the polarization direction is:

p̄s(t, τf ) =
qeEL
ω2
Lτf

[cos(ωLt)− cos(ωL(t− τf ))] (1.49)

The quasi-classical action can then be evaluated at the stationary points:

S(p̄s, t, t
′) =

1

~

∫ t

t−τf
dt′′
[

(p̄s − qeA(t′′))2

2me
+ Ip

]
=

(Ip + Up)τf
~

− 2Up
~ω2

Lτf
[1− cos(ωLτf )]−

UpG(τf )

~ωL
cos (ωL(2t− τf )) ,

(1.50)

where

G(τf ) = sin(ωLτf )− 4

ωLτf
sin(ωLτf/2)2. (1.51)

Equation (1.50) is plotted in Fig. 1.16 for the limiting cases when Ip >> Up (γKeldysh >> 1)

and when Up >> Ip (γKeldysh << 1). For HHG, the tunneling regime is relevant (γKeldysh < 1,

Up ∼ Ip), so the curve for the quasi-classical action during HHG would lie between the two limiting

cases. It is noted that the curve for the case Up >> Ip exactly matches the fully classical approach

where an integral is performed over the electron’s kinetic energy: SUp>>Ip(t, t
′) =

∫ t
t′ dt

′′mev(t′′)2/~,

with v(t) given by Eq. (1.18).

7 Noting the presence of the implicit factor containing units
[
p−3
]
.

8 However, it is noted that macroscopic phase-matching effects can preferentially select either the long or short
trajectory to be generated brightly.
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Up ≫ Ip
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Figure 1.16: S(p̄s, t, τf ) plotted as a function of ionization phase φ0 for the limiting cases Ip >> Up
(red) and Up >> Ip (blue). For HHG in the tunneling regime, Up will be comparable to Ip, so the
resulting curve will lie between the two curves shown.
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The quasi-classical action depends linearly on the duration of the trajectory τf , causing the

long trajectories to develop significantly more phase compared to the short ones. S(p̄s, t, t
′) also

depends linearly on the ponderomotive potential Up, resulting in a linear dependence with respect

to IL and ultimately a cubic dependence with respect to λL. The linear dependence of S(p̄s, t, t
′)

on IL can result in a spatially-dependent harmonic phase for driving fields with nonzero ∇IL.

Additionally, the long trajectories have a stronger dependence on IL than the short trajectories.

For the trajectories that emit photons with energy 2Up (φ0
∼= π/32 and φ0

∼= 3π/16), dS(p̄s,t,t′)
dIL

is

5.3 times larger for the long trajectory than the short. The importance of this trajectory-dependent

phase will be discussed in Section 1.4.3.

Another characteristic to note about the oscillating dipole qeχ̈(t) is that it contains terms

related to the interaction between the bound state |0〉 and the continuum states |p〉, specifically, the

dipole matrix elements dy(p) combined with the relative phase difference S(p, t, t′). The physical

interpretation is that the time-varying interference resulting from the overlap of these states gives

rise to the oscillating dipole, and thus, harmonic emission. Figure 1.17 shows a quantum simulation

of the electron’s wavepacket, indicating the interference between the ground and continuum states.

Finally, the integral in Eq. (1.48) is usually limited to values of t ≤ T so that only electrons

ionized during the same cycle of the harmonic emission are considered. It is possible for electrons

ionized during previous cycles to recollide with the ion during the current cycle, but these free

electrons’ wavepackets have spread out and reduced in amplitude as a result of quantum diffusion

(discussed in Section 1.3.2). Therefore, it is usually valid to neglect the contributions from previous

cycles’ ionized electrons.

1.3.2 Quantum Diffusion of the Electron Wavepacket

Quantum diffusion of the free electron wavepacket ultimately reduces the harmonic dipole

strength. The longer the electron spends in the continuum, the more dispersed its wavepacket

becomes, and the smaller amplitude it will have in the region that overlaps with the bound state

wavefunction. This results in reduced harmonic emission for large values of τf , as can be seen in
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λL= 800 nm


λL= 1.3 µm


λL= 2.0 µm


Figure 1.17: Total electron wavepacket (2D projection, normalized to 1) calculated at the peak of
a three cycle laser pulse for three different wavelengths. The laser polarization is along the longer
dimension of the plots. Adapted from [106].
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the τ
−3/2
f dependence of Eq. (1.48). In terms of the harmonic intensity or flux, the scaling from

quantum diffusion is τ−3
f . These dependencies on τf are a direct result of quantum diffusion and

can be derived using a Gaussian approximation for the bound state |0〉:

|0〉 ∼= π−3/4σ
−3/2
0 exp

(
−r2

2σ2
0

)
, (1.52)

where σ0 specifies the spatial width of the bound wavefunction, which should be on the order of

the Bohr radius rB.

Upon ionization in the strong field approximation, some fraction of the bound wavefunction

enters the continuum states |p〉, where the relative amplitudes of the individual unbound states

C(p) can be calculated through a simple decomposition of |0〉 into |p〉:

|0〉 =

∫
d3p C(p) |p〉

C(p) =

∫
d3r 〈p|0〉

(1.53)

Here, the amplitudes C(p) must have units of
[
p−3
]
. From Eq. (1.30), it is clear that the amplitudes

C(p) are calculated through a simple Fourier transform of the bound state, resulting in a Gaussian

in p-space:

C(p) =

∫
d3r π−3/4σ

−3/2
0 exp

(
−r2

2σ2
0

)
× e−ip·r/~

= 2
√

2π3/4σ
3/2
0 exp

(
−p2

4~2/σ2
0

) (1.54)

After the ionization step, the freed electron is subjected to the time-dependent oscillating

laser potential. The expectation value of the ionized electron’s position

〈r〉 =

∫
d3r

∫
d3p C∗(p) 〈p| r C(p) |p〉 (1.55)

should follow the motion described during the propagation step in Section 1.2.2. The electron’s

wavepacket will diffuse in addition to this motion, and it is assumed that the diffusion transverse

to the polarization direction can be calculated separately from the average motion. This is allowed

since the Schrödinger equation is separable in the non-relativistic regime, giving rise to a free

particle Hamiltonian for the transverse directions. Conveniently, each |p〉 has a propagator for
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time development in the form of the phase e−iEpt/~, where Ep = p2

2me
. Therefore, to propagate the

wavefunction forward in time, a quadratic phase must be added:

|Ψ(r, t)〉 =

∫
d3p C(p) |p〉 exp

(
−ip2t

2me~

)
(1.56)

Using Eq. (1.30) and Eq. (1.54), |Ψ(r, t)〉 takes the form of an inverse Fourier transform of a

Gaussian multiplied by a quadratic phase. The quadratic phase in momentum space is responsible

for broadening the wavepacket in position space, and the integral can be handled by treating the

total integrand as a single Gaussian with a complex width in momentum space. Performing the

integration along one of the transverse dimensions yields the wavefunction along that dimension at

time t after ionization:

|Ψx(t)〉 = π−1/4σ(t)−1/2 exp

(
−x2

2σ(t)2

)
exp

(
i
mex

2

2~R(t)

)
exp(iΓ(t)), (1.57)

where:

tD = σ2
0me/~

σ(t) = σ0

√
1 +

(
t

tD

)2

R(t) = t

[
1 +

(
tD
t

)2
]

Γ(t) = −1

2
tan−1

(
t

tD

)
(1.58)

This form 9 derived from the free particle Schrödinger equation is valid for the two dimensions trans-

verse to the polarization axis in the non-relativistic regime, but the presence of the time-dependent

laser potential prevents the polarization axis to be treated as a free particle. Additionally, the

ground state before ionization would not be expected to have the same width along the polariza-

tion axis as the transverse width σ0. Indeed, for the transverse directions, σ0 is typically larger than

rB due to the shifting of the electron in Vatomic(r) by the laser field. σ0
∼=
(

3
√

2~
8meωL

γKeldysh

)1/2
was

presented in [28], while σ0
∼= 4 rB has been shown to agree with numerical studies [169, 170, 92].

9 Note the similarity to Gaussian beam propagation (Section 1.4.3), which uses the same wave-decomposition of
a Gaussian electric field amplitude. For instance, the characteristic diffusion time tD is analogous to the Rayleigh
range zR. The parabolic and Gouy phase terms are present as well.
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Using this value, the characteristic diffusion time tD = 388 as, which for reference is comparable

to the return time τf of an electron ionized at φ0 = π/10 for a driving laser with wavelength 175

nm.

Despite the fact that the polarization direction cannot be treated equally, diffusion should

still occur in that direction, even if not exactly as σ(t). From Eq. (1.57) and the form for σ(t), it

can be assumed that the total probability density 〈Ψ(t)|Ψ(t)〉 scales roughly as t−3 in amplitude,

for t > several tD. Therefore, the free electron’s overlap with the bound state will correspondingly

be reduced by this factor. This is in agreement with the statement at the beginning of this section:

the harmonic flux scaling from quantum diffusion is τ−3
f , or λ−3.

1.3.3 Quantum Mechanical Characteristics of HHG

The quantum mechanical analysis preformed in this section has revealed new physics beyond

the simple semi-classical approach from Section 1.2. This approach gives a more straightforward

and intuitive method for calculating the harmonic emission as opposed to classical scattering theory.

Of primary importance is the treatment of the ionized electron as a spreading wavepacket, which

accounts for the electron’s many possible initial momentum states and ultimately results in an

analytical scaling of τ−3
f for the harmonic flux. The single-atom HHG flux scaling thus receives a

λ−3
L contribution from quantum diffusion, and a λ−2

L scaling from increasing harmonic bandwidth

(Eq. (1.22)) for a fixed energy interval. Macroscopic effects can further limit this scaling, resulting

in a final HHG flux scaling ranging from λ−5
L to λ−9

L [161, 120, 42, 98].

Finally, the quantum mechanical explanation for the harmonic emission lies in the oscillating

dipole qeχ̈(t), where the harmonic frequency dependence arises from the phase S(p̄, t, t′). In short,

the semi-classical action is responsible for the frequency conversion, while also describing the tra-

jectory the electron takes. Thus, any perturbation of the electron’s trajectory can give rise to a

phase shift in the harmonic dipole. Absolute phase shifts are of little importance in terms of their

effect on the harmonic spectrum except when the phase shifts are asymmetric across half-cycles of

the laser. This phase asymmetry can emulate a linear phase in the time domain, mapping to a fre-
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quency shift in the spectral domain. Therefore, it is possible to observe harmonics that are shifted

from their typical odd positions, provided there is a mechanism to break the half-cycle symmetry of

the electron trajectory. Relativistic effects (Chapter 4), quickly varying pulse envelopes (dt ≈ T ),

and multicolor drivers are possible symmetry-breaking mechanisms.

1.4 Macroscopic Picture of HHG

To this point, only the single-atom picture of HHG has been discussed in detail. The physics

that governs the microscopic picture sets limits on the properties of HHG that are possible, and

macroscopic effects tend to further constrain those characteristics. Some of the additional con-

straints can be considered detrimental for certain applications. As will be shown, macroscopic

effects tend to reduce the spectral cutoff energy, which can limit spectroscopy experiments [135].

On the other hand, the presence of many atoms contributing to the final output leads to bright

emission that is highly directional (as opposed to the Larmor radiation pattern of Fig. 1.15), allow-

ing the use of smaller optics to steer the full harmonic beam. The harmonic pulse train in the time

domain can also be restricted to one or a few half-cycles, which can be beneficial for time-resolved

applications. Here, the details of phase-matching dynamics in the time-domain are left for further

discussion in Chapter 2.

The macroscopic treatment of HHG will assume a gaseous medium of length Lmed and density

ρ(z), where ρ(z) may vary as a function of location z along the medium. For simplicity, ρ(z) will

be equal to zero for z < 0 and for z > Lmed, and the final harmonic output will be defined at the

location z = Lmed.

1.4.1 Phase-Matching

First, consider the 1D case where the gas medium has a constant density ρ(z) = ρ0, and the

driving field is a monochromatic plane-wave with frequency ωL and wavenumber kL = n(ωL)ωL/c.

The emission from an atom at location z will result in the following field strength at the medium
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exit:

EHHG(Lmed) = E0
HHGe

iΦ(z)eiγ(ωq)(Lmed−z), (1.59)

where E0
HHGe

iΦ(z) is the microscopic amplitude and phase of the harmonic field at the time and

location of emission, and γ(ωq) = k(ωq) + iκ(ωq) is the complex wavenumber at the harmonic

frequency ωq = qωL. The harmonic emission phase Φ(z) is related to the phase of the fundamental

field at the time and location of emission. Considering the emission from two atoms at locations

z1 and z2, the combined output will be given by:

2∑
zi

EHHG(Lmed) = E0
HHGe

iΦ(z1)eiγ(ωq)(Lmed−z1)
(

1 + ei(z2−z1)(q∗n(ωL)ωL/c−γ(ωq))
)

(1.60)

To achieve the maximum output amplitude for arbitrary z1 and z2, the following must be true:

k(ωq) = q ∗ n(ωL)ωL/c. Since k(ωq) is defined as n(ωq)ωq/c, the condition for maximum harmonic

field strength at the medium exit simplifies to an equivalence of refractive indices for the funda-

mental and harmonic frequencies: n(ωL) = n(ωq). Often, this is described as a matching of the

phase velocities for the two frequencies vφ(ωL) = vφ(ωq), or as a wavevector mismatch equation:

∆k ≡ k(q ωL)− q k(ωL) = 0 (1.61)

Equation (1.61) represents the 1D phase-matching condition for the simple monochromatic, collinear

scenario. For an arbitrary number of driving fields with frequencies ωj and 3D wavevectors kj , the

general phase-matching equation is:

∆k ≡ kQ(ωQ)−
∑
j

mj kj(ωj) = 0

ωQ =
∑
j

mj ωj

(1.62)

Here, mj is an integer describing the number of photons from driving field j that contribute to the

final output field with frequency ωQ propagating along the direction of kQ(ωQ). Sum frequency

generation (SFG) corresponds to values of mj that are all positive, whereas difference frequency

generation (DFG) can occur when one or more of the mj values are negative. More discussion on

high-order DFG is presented in Section 5.3.
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Once again, Eq. (1.62) is the condition for the brightest harmonic field strength at the exit of

the HHG medium. Its physical interpretation is the conservation of momentum and energy for the

frequency conversion process. For |∆k| 6= 0, a coherence length Lcoh can be defined that specifies

the medium length over which the harmonic emission adds constructively:

Lcoh ≡
π

|∆k|
(1.63)

The effect of the coherence length Lcoh on the final harmonic output will be discussed further in

Section 1.4.5. A diagram of the phase-matching concept is shown in Fig. 1.18.

1.4.2 Phase-Matching in Fractionally Ionized Gases

Calculating ∆k requires knowledge of the medium and its effect on k(ωL) and k(ωq). Fur-

thermore, the HHG geometry can contribute to the total phase mismatch. The wavevector can be

written as a sum of each contribution:

k(ω) = kvacuum(ω) + katoms(ω) + kions(ω) + kplasma(ω) + kgeom(ω) + k∇IL(ω) (1.64)

The first four terms are simple to calculate for any experimental geometry. The vacuum

wavevector has magnitude kvacuum(ω) = 2πω/c. For collinear HHG where all driving beams are

parallel to the output beam ( kj(ωj) ‖ k(ωQ) ∀ j ), the vacuum contribution to ∆k vanishes.

However, this is not true for noncollinear geometries.

The neutral atom term can be determined from the dispersion of the neutral portion of the

medium. The wavevector magnitude katoms(ω) is related to the refractive index:

katoms(ω) = [n(ω)− 1]
ω

c
(1.65)

If the linear index of refraction of a neutral gaseous medium at 1 atm is n0
1(ω), then the neutral

contribution to the linear index of refraction of a gas at arbitrary pressure (P = P̄ × 1 atm) and

neutral population fraction η0 would be n1(P, η, ω) = 1+ P̄ η0(n0
1(ω)−1). 10 Furthermore, there is

10 For clarity, η0 = 1 represents a fully neutral gas without ionization; ion species’ population fractions are
represented as ηi. The total ionization fraction ηtot =

∑Z
i=1 i ∗ ηi
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Δk ≠ 0

Lcoh

Δk = 0

Lcoh =∞

B 

A 

Figure 1.18: Phase-matching during HHG. (A) The wavevector mismatch ∆k = 0, corresponding
to an infinite coherence length Lcoh. All atoms emit harmonics in sync with each other, leading to
a bright output. (B) The wavevector mismatch ∆k 6= 0, corresponding to a finite coherence length
Lcoh. The atoms shown span one coherence length, resulting in weaker (but nonzero) emission.
Note that Lcoh ∼ λL is an extreme case of phase mismatch.
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a nonlinear index of refraction n0
2 from neutral atoms that can contribute to the total index if the

laser intensity is high. In HHG, only the driving fields have sufficient intensity for the nonlinear

refractive index to be significant. Ultimately, the equation for ∆katoms in the monochromatic,

collinear case becomes:

∆katoms = katoms(qωL)− qkatoms(ωL) = −qP̄ η0
2π

λL
(∆δ0 + n0

2 IL), (1.66)

where ∆δ0 = n0
1(ωL) − n0

1(qωL) is the difference in the linear refractive index at the fundamental

and harmonic frequencies, and n0
2 IL is the nonlinear contribution to the refractive index from the

driving laser at λL and 1 atm. For fundamental and harmonic frequencies far from resonances, ∆δ0

is positive, as can be deduced from Fig. 1.19. Thus, ∆katoms < 0.

Infrared Visible Ultraviolet X-ray
ωIR ωUV ωK ,L ,M

0

Frequency

n(ω)
1


Figure 1.19: A qualitative illustration of the real part of the refractive index across the electromag-
netic spectrum. Resonances occur at atomic and molecular absorption edges, resulting in variations
in n(ω) via the Kramers-Kronig relations. For X-ray frequencies above all atomic resonances, there
is asymptotic tendancy toward n(ω) = 1. Figure adapted from [7].

The contribution to k(ω) from ion species can be approached the same way as the atom term.

Unsurprisingly, the form for ∆k is nearly identical:

∆kions = −
Z∑
i=1

qP̄ ηi
2π

λL
(∆δi + ni2 IL), (1.67)

where the index i refers to quantities that pertain to ion species of charge state i. The parameters

ni2 and ∆δi can be difficult to determine precisely since experimental measurements would need to

occur on ultrafast time scales and would be convoluted by the presence of plasma and multiple ion
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species. Ab initio calculations can be performed to estimate the order of magnitude of the linear

and nonlinear refractive indices, as demonstrated in [134] for Ar species at 270 nm. Similarly to

neutral atoms, ∆kions < 0.

The plasma term of Eq. (1.64) can also be determined through the refractive index. The

plasma resonance frequency ωp is given by:

ωp =

√
q2
ene
ε0me

, (1.68)

where ne = ηtotNaP̄ is the free electron number density, and Na is the number density of atoms

in a gas at standard pressure and temperature. The plasma resonance leads to a plasma refractive

index given by:

nplasma(ω) =

√
1−

(ωp
ω

)2
=

√
1−

(
ne

nc(ω)

)
, (1.69)

where nc(ω) = ε0meω
2/q2

e is the critical plasma density above which light at frequency ω will be

reflected by the plasma. The typical pressures and ionization levels used for HHG are such that

the plasma density ne is much smaller than the critical density nc.
11 As such, a Taylor expansion

can be performed to approximate the plasma refractive index:

nplasma(ω) ∼= 1− 1

2

(ωp
ω

)2
(1.70)

The plasma term of Eq. (1.64) has a magnitude:

kplasma(ω) = (nplasma(ω)− 1)
ω

c
= −

ω2
p

2cω
(1.71)

For the monochromatic, collinear HHG case, the plasma term for the phase mismatch is then:

∆kplasma =
ω2
p

2cωL

(q2 − 1)

q
= nere

(q2 − 1)

q
λL = ηtotNareP̄

(q2 − 1)

q
λL (1.72)

Here, the classical electron radius re was substituted. For large harmonic orders q & 10, the term

(q2−1)
q
∼= q, allowing ∆kplasma to have the same qP̄ dependence as ∆katoms and ∆kions. For nonzero

ionization levels, ∆kplasma > 0.

11 However, high pressures can be necessary for phase-matching HHG when using longer wavelength drivers.
Therefore, plasma mirroring effects could introduce a limitation on HHG driven by wavelengths λL > 10 µm.
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Before considering the two remaining terms relevant to phase-matching, some conclusions

can be drawn concerning the contribution from the fractionally-ionized medium. Under the most

common HHG conditions where a low level of tunnel ionization occurs (η1 << 1, η0 = 1 − η1),

∆kions can be neglected. The medium’s contribution to the total phase-mismatch at high harmonic

order is then:

∆kmedium ∼= ∆katoms + ∆kplasma ∼= qP̄

[
−(1− η1)

2π

λL
(∆δ0 + n0

2 IL) + η1NareλL

]
(1.73)

Satisfying the phase-matching condition ∆kmedium = 0 for arbitrary driving wavelength and har-

monic order gives a solution for the critical ionization level:

ηc =

[
λ2
LNare

2π(∆δ0 + n0
2IL)

+ 1

]−1

(1.74)

Often, the nonlinear term n0
2IL is small compared to ∆δ0, but ηc still depends on λL (and somewhat

on q through ∆δ0). The critical ionization level ηc represents a zero crossing of ∆kmedium(η1). For

η1 < ηc −→ ∆kmedium < 0, and for η1 > ηc −→ ∆kmedium > 0. In the next section, the geometrical

contributions to ∆k will be shown to be positive. As a result, phase-matching is only possible for

η1 < ηc (in the monochromatic, collinear HHG scenario).

Just considering the medium contribution to phase-matching, some conclusions can be drawn

regarding the driving laser intensities that are appropriate for phase-matched HHG. Assuming an

8-cycle driving laser pulse, ADK ionization levels can be calculated so that the critical ionization

level ηc is achieved at the peak of the pulse. This sets an optimal peak intensity level that will

maximize the efficiency of the HHG process, since exceeding this peak intensity level will cause

phase-matching to occur on the leading edge of the pulse where there are lower intensities, while

smaller peak intensities will result in phase-matching on the trailing edge of the pulse (or not at

all). Performing the ADK calculation results in Fig. 1.20, which shows the optimal intensities

to drive HHG in noble gases for driving wavelengths up to 20 µm. Also plotted are the optimal

intensities for a mode-averaged HHG signal.
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Figure 1.20: Predicted laser intensity required to reach the critical ionization level at the peak of
an 8-cycle laser pulse on axis (solid line), and when modal averaging is taken into account (dashed
line). Adapted from [106].
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1.4.3 Phase-Matching Geometries

In this section, the geometrical contribution to ∆k will be discussed. For monochromatic,

collinear HHG, there are two primary geometries: the Gaussian free-focus geometry and the waveg-

uide geometry. Certainly, there are other geometries possible for multi-color, noncollinear schemes,

in which the full vector form of ∆k must be considered. The two-beam, noncollinear, bichro-

matic scenario will be discussed in Section 5.3. Here, only the Gaussian free-focus and waveguide

geometries will be considered.

Gaussian Free-Focus Geometry

Realistic laser spatial modes can be flat-topped, Bessel- or sinc-like as a result of amplifier

gain profiles, propagation in fiber waveguides, and clipping on apertures. However, these can

be approximated as Gaussian for simplicity, since it is straightforward to arrive at a theoretical

description of how Gaussian modes propagate. Gaussian modes are convenient to model because

they maintain their Gaussian shape throughout propagation. The derivation for a Gaussian mode

amplitude and phase in the paraxial approximation involves solving the source-free scalar wave

equation, and is analogous to the derivation of the free electron wavepacket |Ψ(t)〉 presented in

Section 1.3.2. A Gaussian mode takes the following scalar form in the transverse direction (r), as

a function of propagation distance z from a focal point:

E(r, z) = E0
w0

w(z)
exp

(
−r2

w(z)2

)
exp

(
ikr2

2R(z)

)
exp(iΓ(z)), (1.75)

where:

zR =
πw2

0

λL

w(z) = w0

√
1 +

(
z

zR

)2

R(z) = z

[
1 +

(zR
z

)2
]

Γ(z) = −tan−1

(
z

zR

)
(1.76)

Here, w(z) is the radius at which the intensity drops to 1/e2 of the central intensity (with value

w0 at the focal position), zR is called the Rayleigh range, R(z) represents the wavefront radius of
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curvature, and Γ(z) is called the Gouy phase. Note that here, k = 2π
λ is the vacuum wavenumber.

Figure 1.21 depicts the qualities of a Gaussian free-focus.

To evaluate the wavevector kGaussian of the mode, the gradient of its phase is taken:

kGaussian = ∇Φ(r)

→ kGaussian =
∂

∂z

[
kr2

2R(z)
+ Γ(z)

]
= −ω

c

 w2
0 + r2

2z2
R

(
1 + z2

z2R

)
 (1.77)

The wavefront curvature and Gouy phase ultimately reduce the Gaussian mode wavenumber com-

pared to the plane-wave value in vacuum. Looking on-axis (r = 0):

kGaussian(r = 0)→ kGouy =
−1

zR

(
1 + z2

z2R

)
∼=
−1

zR
(for z << zR)

(1.78)

If HHG was possible far from the focus (z >> zR), the mode wavenumber would become kGouy ∼= 0.

For the purposes of standard HHG in a free-focus, only regions near the focus where there is high

intensity will be relevant. With the assumption that the harmonics are generated with a similar

confocal parameter, the geometric contribution to ∆k from the Gouy phase is:

∆kGouy =
(q − 1)

zR
(1.79)

Clearly, ∆kGouy > 0.

Off-axis, the effect of the radius of curvature is nonzero and varies quadratically with r:

∆kRoC =
(q − 1)

zR

r2

w2
0

(1.80)

Its contribution can result in a radially-dependent phase-mismatch where certain radii can be

roughly phase-matched for a length ∼ zR while other radii contain a large amount of phase-

mismatch. Again, the wavevector mismatch is postive: ∆kRoC > 0. The total geometric wavevector

mismatch for a Gaussian mode at arbitrary radius is the sum ∆kGouy + ∆kRoC :

∆kGaussian =
(q − 1)

zR

(
1 +

r2

w2
0

)
(1.81)
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Figure 1.21: An illustration of a Gaussian free-focus and its characteristic parameters.
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Recall that there is one final term that contributes to the wavevector: k∇IL(ω). This term

is related to the linear dependence of the intensity on the electron’s quantum phase, as discussed

in Section 1.3.1. Thus, any driving field that has a nonzero intensity gradient along the z-axis will

result in an additional phase-mismatch. The phase only applies to the harmonic wavevector, so

that the form for the wavevector mismatch is:

∆k∇IL =
q2
eτf

4~meω2
L

∇|E(r, z)|2 (1.82)

The gradient (along z) of |E(r, z)|2 from Eq. (1.75) is:

∂

∂z
|E(r, z)|2 = −2|E(r, z)|2 (w(z)2 − 2r2)λL

πw(z)4

(
z

zR

)
(1.83)

It is evident that ∆k∇IL for a Gaussian free-focus varies with respect to z and can have a negative

magnitude. This fact can be exploited when also considering the geometric contribution ∆kGaussian.

Looking on-axis, it is possible for the sum ∆kGouy+∆k∇IL = 0 at certain locations along the z-axis.

Additionally, ∆k∇IL depends on τf , suggesting that different trajectories can be phase-matched at

different z-positions. Figure 1.22 illustrates this trajectory-dependent, z-dependent phase-matching

concept. The importance of this finding is that for a Gaussian beam focused through a short medium

(Lmed < zR, i.e. a gas jet or gas cell), the trajectories that will be phase-matched will depend on the

z-location of the gas jet with respect to the focal position. Long trajectories can be phase-matched

when the gas jet is close to the focus, whereas short trajectories would be phase-matched for a gas

jet placed just after the focus. This analysis assumes the phase-matching occurs along the axis,

but phase-matching can occur off-axis. L’Huillier and Balcou et al. [69, 8] discovered that the

harmonic efficiency and beam divergence can be controlled by adjusting the focal spot with respect

to the gas jet. Long trajectories tend to phase-match in an off-axis ring, whereas short trajectories

phase-match on-axis.

For a Gaussian free-focus, the total phase mismatch equation on-axis is the sum of all the
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Driving laser parameters

IL = 4×1014W/cm2

λL = 800 nm

w0 = 50 μm
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Figure 1.22: A plot of the on-axis geometrical phase-mismatch ∆kGouy + ∆k∇IL for a Gaussian
free-focus as a function of axial position. Typical HHG driving conditions are used: IL = 4× 1014

W/cm2, λL = 800 nm, and w0 = 50 µm. Under these conditions, zR = 9.8 mm, and 2Up corresponds
to q ∼= 31 while 3.17Up corresponds to q ∼= 49. Ionization phases for the 2Up cases are φ0 = π/32
(long) and φ0 = 3π/16 (short).
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contributions discussed here and in Section 1.4.2:

∆k = ∆katoms︸ ︷︷ ︸
<0

+ ∆kions︸ ︷︷ ︸
<0

+ ∆kplasma︸ ︷︷ ︸
>0

+ ∆kGouy︸ ︷︷ ︸
>0

+ ∆k∇IL︸ ︷︷ ︸
+/−

= qP̄

[
−

Z∑
i=0

(
ηi

2π

λL
(∆δi + ni2 IL)

)
+ ηtotNareλL

]
+

(q − 1)

zR
+

q2
eτf

4~meω2
L

∇|E(r, z)|2
(1.84)

The off-axis equation requires the full vector form of ∆k, which includes a nonzero contribution

from ∆kvacuum and ∆kRoC .

Waveguide Geometry

HHG in a Gaussian free-focus is limited to a region where the driving laser maintains high

intensity. Additionally, the z-dependence of ∆k∇IL imposes a restriction on the length of medium

where phase-matching is possible. These limitations ultimately reduce the harmonic flux possible

in a free-focus geometry. Thus, an alternative geometry that can extend the interaction length for

efficient harmonic generation is desirable. The goal would employ radial confinement of the laser

energy over long distances, which is possible with waveguiding techniques. Plasma waveguides have

been used [85, 16, 132], as well as gas-filled hollow capillaries [110, 106]. Here, the latter will be

explored in detail. Figure 1.23 depicts the hollow waveguide geometry under consideration.

r

θ


z
2a

L


ε0 , µ0


ε , µ0


x
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Figure 1.23: Illustrations of the hollow waveguide geometry.

Marcatili solved for the full electromagnetic field components for the hollow waveguide modes

in [79]. Appendix A contains detailed information on the waveguide modes and a comparison to

Gaussian beams. Here, the mode that most closely resembles a linearly-polarized Gaussian mode

(the EH11 mode) will be investigated (though the TE and TM ”doughnut” modes can be used to
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drive HHG, as will be discussed in Section 5.1). For the purposes of phase-matching, the complex

wavenumber γpq is of primary importance:

γpq = k

[
1− 1

2

(upq
ka

)2
(

1− i

ka

(n2 + 1)√
n2 − 1

)]
(1.85)

Here, Jp is a pth order Bessel function of the first kind, upq is the qth root of the equation Jp−1(upq) =

0, n =
√
ε/ε0 is the complex refractive index of the waveguide material, k = 2π/λ, and a is the

inside radius of the hollow waveguide.

For the EHpq mode, kwaveguide(ω) = Re[γpq(ω)]. Neglecting the small real contribution

resulting from Im
[
n2
]
, the wavevector mismatch from the waveguide mode can be easily obtained:

∆kwaveguide = kwaveguide(qωL)− qkwaveguide(ωL) ∼=
u2
pqλL(q2 − 1)

4πqa2

∼=
qu2

pqλL

4πa2
(for q >> 1)

(1.86)

Because the waveguide confines the light, each mode will propagate independently and with-

out any change in shape or phase (barring any nonlinear effects that may exist during strong field

processes like HHG). In the linear regime, there are no Gouy phase or radius of curvature effects.

For low loss modes (Im[γpq] ∗ Lwaveguide << 1) and low levels of ionization, there would be a neg-

ligible longitudinal gradient in the intensity, so ∆k∇IL
∼= 0 on-axis. ∆kwaveguide would be the only

geometrical component. Generally, however, the imaginary component of γpq leads to a nonzero

gradient of |Epq(r, z)|2 along the propagation direction:

∂

∂z
|Epq(r, z)|2 = −2Im[γpq] |Epq(r, z)|2 (1.87)

Since |Epq(r, z)|2 decays exponentially as a function of z, so does ∆k∇IL for this geometry. Ulti-

mately, the total wavevector mismatch on-axis for the hollow waveguide geometry is:

∆k = ∆katoms︸ ︷︷ ︸
<0

+ ∆kions︸ ︷︷ ︸
<0

+ ∆kplasma︸ ︷︷ ︸
>0

+ ∆kwaveguide︸ ︷︷ ︸
>0

+ ∆k∇IL︸ ︷︷ ︸
∼=0

= qP̄

[
−

Z∑
i=0

(
ηi

2π

λL
(∆δi + ni2 IL)

)
+ ηtotNareλL

]
+
qu2

pqλL

4πa2
+

q2
eτf

4~meω2
L

∇|Epq(r, z)|2
(1.88)
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Phase-matching in the waveguide geometry is possible by balancing the phase-mismatch

contribution from the medium with that from the waveguide: ∆kmedium + ∆kwaveguide = 0. Recall

that the medium contribution is either positive or negative depending on the ionization level.

Only for η1 < ηc can ∆kmedium = ∆katoms + ∆kions + ∆kplasma < 0. Furthermore, the medium

contribution depends linearly on the pressure. Thus, as long as the ionization level is below the

critical level, there is a route to achieving phase-matching by adjusting P̄ .

Perfect phase-matching (∆k = 0) during HHG creates restrictions on the driving conditions

of the process. Because the ionization level has an upper bound ηc, the driving laser cannot produce

an excess level of ionization within the medium due to its high intensity. For driving pulses with

long durations, the ionization fraction builds to high levels before the peak of the pulse arrives. In

this case, the peak intensity must be reduced such that phase-matching may occur at the pulse’s

peak (thus limiting the single atom cutoff that scales as ILλ
2
L). Alternatively, the pulse duration

may be reduced to limit the accumulation of plasma before the center of the pulse, thus allowing

higher peak intensities to be achieved at the phase-matched ionization level. The pulse duration

can only be reduced so far (a single cycle), imposing a maximum intensity achievable for perfect

phase-matched conditions. Single-cycle drivers can also have group velocity walkoff issues that

limit the medium length over which HHG is generated efficiently. Ultimately, the phase-matching

constraint effectively reduces the scaling law for the harmonic cutoff energy to the phase-matching

cutoff [160]:

EPMC ∝ λ(1.6−1.7) (1.89)

1.4.4 Quasi-Phase-Matching

Even if the driving laser pulse has enough intensity to result in very high single atom cutoff

energies, perfectly phase-matched emission would be impossible at any energies that exceed EPMC

(using a standard single-beam geometry). It is possible to bypass the phase-matching cutoff using

a technique called quasi-phase-matching (QPM). Through QPM, the ionization limitation ηc can

be exceeded to result in a nonzero phase-mismatch (∆k 6= 0), resulting in a finite coherence length
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Lcoh. Typically, this scenario would result in the coherent buildup of harmonic light during the

first portion of the medium (up to Lcoh), but in the next length of medium (Lcoh < z < 2Lcoh) any

additional generated harmonic light would deconstructively interfere with the existing harmonic

emission. To reduce or avoid the cancellation effect in this second region of the medium, the phase-

mismatch ∆k can be altered or the harmonic emission can be shut off in this latter region. By

repeating this process in a periodic way, the total harmonic emission at photon energies that are

conventionally unachievable can grow to moderately bright levels.

A simple model of the generation of harmonic light can be modeled as follows:

Eq ∝
∫ Lmed

0
Aqe

−i∆kzdz, (1.90)

where Aq represents the transverse spatially- and time-integrated dipole emission strength per unit

length of the HHG process of order q. In QPM, an additional factor is included in the integral:

d(z) = deff

∞∑
m=−∞

Gme
iKmz, (1.91)

where Km = 2πm/Λ is the effective wavevector of the QPM scheme, m is the order of the QPM

process, and deff and Gm are amplitudes that allow d(z) to be a general periodic function. Defining

Λ = 2Lcoh and adding d(z) to Eq. (1.90) reveals that the brightest harmonic emission occurs for

K1 = ∆k and Gm = δm,1. However, enhanced emission can occur for higher order QPM (odd

values of m). Ultimately, the phase-mismatch equation is modified in QPM:

∆kQPM =
π

Lcoh
= ∆kmedium + ∆kgeometry −Km (1.92)

Larger values of Km (smaller periodicity Λ) can compensate for a larger conventional ∆k, and

therefore higher levels of ionization within the medium.

There are various approaches to achieve QPM. Periodic modulation of the medium can be

achieved through waveguides with longitudinally-varying radii and through pressure modulations

created by multiple gas sources (successive gas jets or alternating gas supply/pump holes in a

waveguide). Additional light waves can also be implemented to achieve QPM [24, 176]. These

schemes are shown in Fig. 1.24.
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Figure 1.24: QPM schemes for HHG. (A) Waveguides with modulated inner diameters [93, 136].
(B) Pressure modulation in waveguides. (C) Pressure modulation through successive gas jets [147].
(D) Grating-assisted phase-matching through counterpropagating CW laser light (adapted from
[24]).
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Table 1.4: A table of absorption lengths for light with various photon energies propagating through
a number of gases relevant to HHG. The gas pressure is 1 atm in all cases.

Labs,0(E)

E He Ne Ar Kr Xe Air

30 eV 7.2 µm 4.5 µm 1.5 µm 2.4 µm 5.2 µm 9.3 µm
100 eV 93 µm 9.8 µm 30 µm 17 µm 1.5 µm 201 µm
300 eV 2.3 mm 108 µm 13 µm 10 µm 24 µm 37 µm
500 eV 11 mm 408 µm 34 µm 21 µm 39 µm 55 µm
1 keV 1.0 m 156 µm 181 µm 99 µm 19 µm 231 µm

1.4.5 Reabsorption

In the macroscopic picture of HHG, the generation and coherent superposition of harmonic

light is only part of the full story. Harmonic light is also reabsorbed by the same medium that

generates it. To accurately predict the final harmonic flux from a medium, one must consider

generation, phase-matching, and reabsorbtion simultaneously. Constant et al. provide a simple

1-D approach to model the harmonic flux as a function of longitudinal position [25]. Their analysis

assumes a constant phase-mismatch, but can be extended to longitudinally-varying mismatch (i.e.

pressure profile) as is investigated here.

The transmission of harmonic light through an absorbing medium can be determined using

data from the Center for X-ray Optics (CXRO) database [63]. For a gas at a given pressure P

and light at a particular photon energy E, one can define an absorption length Labs(E,P ) for the

medium through which the transmission is 1/e. Table 1.4 lists absorption lengths for several gases

and photon energies at a pressure of 1 atm, which we define as Labs,0(E) = Labs(E, 1atm). To

calculate the absorption length of a medium at a different pressure: Labs(E,P ) =
(

1 atm
P

)
Labs,0(E).

To calculate the transmission of a gaseous medium with length Lmed at pressure P :

T (E,P, Lmed) = e−Lmed/Labs(E,P ) (1.93)

The simplest 1-D approach to calculate the harmonic flux level at the exit of a uniform gaseous

medium is straightforward; the electric field output is simply the integrated sum of the emission for

all points along the medium, where each differential position has a local emission amplitude ρAq
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and propagation factor that simultaneously accounts for phase-mismatch and reabsorption:

exp

{
−
(

1

2Labs(E,P )
+ i∆k

)
(z − Labs)

}
(1.94)

Ultimately, the harmonic flux is:

ωq
4cε0~

∣∣∣∣∫ Lmed

0
ρAq exp

{
−
(

1

2Labs(E,P )
+ i∆k

)
(z − Labs)

}
dz

∣∣∣∣2 (1.95)

For a medium with constant pressure and driving laser, the integral evaluates to:

ρ2A2
q

4L2
abs

1 + 4π2(Labs/Lcoh)2

[
1 + exp

(
−Lmed
Labs

)
− 2 cos

(
πLmed
Lcoh

)
exp

(
−Lmed

2Labs

)]
(1.96)
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Figure 1.25: Plots of the accumulation of HHG flux as a function longitudinal position within the
HHG medium. The ratio between the absorption length Labs and coherence length Lcoh are varied.
For perfect phase-matching, the HHG flux saturates after ≈ 10Labs.

Equation (1.96) is useful in understanding the general behavior of the harmonic buildup for

a variety relative values for Labs, Lcoh, and Lmed. Figure 1.25 shows various regimes of harmonic

generation along the longitudinal direction. However insightful, Eq. (1.96) is valid for constant

medium and driving conditions. In reality, the medium will have a varying pressure profile, and
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the driving laser can change in intensity. Maintaining the 1-D dimensionality of the problem but

adding the longitudinal variations, Eq. (1.95) can be modified:

ωq
4cε0~

∣∣∣∣∫ Lmed

0
ρ(z)Aq(z) exp

{
−
(

z − Lmed
2Labs(E, z)

+ iφq(z)

)}
dz

∣∣∣∣2 (1.97)

Here, Labs(E, z) represents the average absorption length for the remainder of the medium from z

to Lmed, and φq(z) is the exit phase of the harmonic emission from position z. Numerical evaluation

of Eq. (1.97) is straightforward to perform in a step-wise manner. The details of the calculation

involve keeping track of the total harmonic flux in each differential section dz, adding to it the

emission from that section, developing its phase according to the local index, and reducing its

magnitude as a result of reabsorption from that section.

1.4.6 Characteristics of Macroscopic HHG Emission

The importance of phase-matching during HHG cannot be underestimated. Applications

of the HHG light source typically require a high level of photon flux for sufficient signal-to-noise

ratios in the experiment. Phase-matching must be satisfied, so the limitations associated with the

phase-matching constraint are unavoidable in standard, single-beam HHG geometries. Equation

(1.89) describes one macroscopic limitation. The cutoff photon energy cannot scale as favorably as

in the single-atom picture ∼ ILλ
2
L. Instead, the phase-matching constraint reduces the scaling to

∼ λ(1.6−1.7) [160]. This scaling has been experimentally verified, as demonstrated in Fig. 1.26. It

is possible to overcome the macroscopic cutoff energy limitations through multi-beam geometries,

which will be further investigated in Section 5.3.

Another macroscopic effect is the ability to preferentially select particular trajectories in a

Gaussian free-focus geometry. Depending on the location of the gas jet with respect to the focus,

long or short trajectories can be preferentially phase-matched, as described in Section 1.4.3.

The effect of reabsorption within the HHG medium limits the harmonic flux that can be

achieved. Even in perfect phase-matching conditions, the harmonic signal saturates after a distance

of ∼ 10Labs. Furthermore, realistic experimental conditions will have pressure profiles that vary
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Figure 1.26: Experimentally-verified scaling of the macroscopic HHG cutoff photon energy EPMC

as a function of driving laser wavelength. Open circles represent the predicted harmonic cutoff
without reabsorption limitations that are present during experiment. Adapted from [160].
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longitudinally. Even if a constant pressure region can be created for perfect phase-matching, there

will be a subsequent transition region before vacuum is reached. The transition region will have

reabsorption without phase-matched generation, again limiting the practical flux achievable.

Finally, the phase-matching constraint has two main contributions that must cancel: ∆kgeometry

and ∆kmedium. We have shown that the medium contribution can be positive or negative depending

on the ionization content. As the driving wavelength is increased, the index of refraction n(λL)

for the driving field generally approaches unity (far from resonances). This results in a decreased

value of ∆δ0. Since the atom contribution is proportional to ∆δ0 as well as λ−1
L , while the plasma

contribution is proportional to λL, the critical ionization level decreases for increasing λL. Another

consequence is that for a given geometry and ionization level η < ηc, there is a route to achieve

phase-matching through the gas pressure P̄ . However, the geometric term tends to increase in

magnitude with λL, which ultimately results in the phase-matching pressure P̄PM increasing with

λL. Figure 1.27 indicates this pressure dependence on wavelength.

Figure 1.27: Pressure and harmonic cutoff energy scalings with driving laser wavelength. The
predicted optimal pressure shows quadratic growth with λL. Adapted from [106].



Chapter 2

Phase-Matching Gating during Mid-IR Driven HHG

1 Once the conceptual and mathematical framework of the microscopic and macroscopic

physics of HHG had been developed, the scaling laws revealed a clear route to pushing the tech-

nology to higher photon energies. More dramatic frequency conversion could occur according the

scaling of the cutoff harmonic photon energy with driving laser wavelength: EPMC ∝ λ(1.6−1.7).

Experiments using long wavelength drivers have been designed in order to investigate the spectral

capabilities and limitations of the HHG process.

Due to the need for ultrafast pulses for phase-matched HHG, and due to the lack of conven-

tional laser oscillators that are ultrafast and operate beyond the near-infrared region, one of the

most practical approaches to achieve appropriate mid-infrared drivers is through optical parametric

amplification (OPA). In OPA, an ultrafast pulse with near infrared or visible wavelength is used to

pump a second-order nonlinear frequency conversion process. The energy of a single pump photon

gets split between two photons with tunable wavelengths. Thus, an input laser pulse with short

wavelength can be converted into two output laser pulses with longer wavelengths (signal and idler

beams). In this chapter, an experiment will be discussed in which two OPA output wavelengths

were utilized. Ultrafast laser light with wavelengths between 1.2 µm and 2.4 µm were achieved

through the use of an 800 nm-driven OPA (Light Conversion HE:TOPAS). Signal light at 1.3 µm

and idler light at 2.1 µm were chosen for this study.

1 The experiment and results described in this chapter are published in [18].
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2.1 Grating Spectrometer Limitations

As described in Section 1.2.4, HHG emission in the temporal domain has a number of char-

acteristics. First, the half-cycle symmetry of the HHG process results in bursts of harmonic pulses

every half-cycle of the driving laser. Thus, a pulse-train of HHG is emitted in the microscopic

picture. Consequently, the spectral domain contains signatures of the interferences between the

individual pulses in the time domain, indicated by the odd harmonic spectral peaks. In many

low-order spectroscopy experiments, observation of these odd harmonics is common. However,

the spectrometer in the experiment must have sufficient spectral resolution to identify individ-

ual harmonics, as opposed to measuring a broad continuum. For visible and near-infrared driven

HHG, this resolution requirement is not an issue; the moderate-energy driving photons cause the

separation between odd harmonics to be relatively large, while the phase-matching cutoff energy

makes the total HHG spectral range to be relatively small. Thus, CCDs with 1024 pixels along

one dimension can easily span the spectral range while resolving individual orders. Assuming a

nearly-linear dispersion of the spectral orders, the requirement for a CCD to adequately resolve

individual harmonics while spanning the entire HHG bandwidth is given by:

EPMC

~ωL
≤ Ns

2
, (2.1)

where Ns is the number of sample points in the spectral domain (the number of transverse pixels

on a CCD).2 Additionally, a grating spectrometer’s ultimate resolving power depends strongly on

the number of illuminated grating grooves, the apertures, and any aberrations added to the beam

by optical elements.

Moving to longer wavelength drivers in the mid-IR causes the HHG spectral range to increase

while the harmonic orders become less separated. To then satisfy Eq. (2.1), the number of spectral

sampling points Ns must increase. Using the scaling law described in Eq. (1.89), Ns scales as

λ
(2.6−2.7)
L . In practice, satisfying this requirement is difficult. As demonstrated in [161] where 3.9

2 It is possible to alleviate this constraint by performing a panoramic spectrum measurement, where the spectral
area of interest is scanned. This measurement, however, may contain complications if there is a need to use multiple
gratings with varying spectral efficiencies in different spectral ranges.
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µm drivers generated soft X-ray light up to 1.6 keV, the very broad measured spectrum could

not resolve individual harmonic orders. Therefore, it is unclear whether the harmonics in that

experiment truly possessed a broadband super-continuum spectrum (and thus a single, isolated

burst of HHG), or whether individual harmonics were indeed present (indicating a pulse-train of

harmonics in the time domain). In response to this uncertainty, a new experiment was designed

that would investigate the temporal and spectral domains simultaneously. This would be possible

through measurement of the electric field autocorrelation of the HHG signal for a variety of driving

laser conditions.

One powerful technique for characterizing the ultrafast temporal structure of a laser pulse is

through Frequency-Resolved Optical Gating (FROG). FROG describes an intensity autocorrelation

measurement that relies on the nonlinear response of an optical medium to measure both the

amplitude and phase of the laser pulse, both of which are required to obtain a full characterization

of the temporal structure of the pulse [164]. This technique requires a nonlinear medium with high

transmission at the laser wavelength. Unfortunately, such media do not exist for EUV and X-ray

light, making standard FROG measurements for HHG impractical. Alternative approaches exist

that can indirectly measure the amplitude and phase of HHG light, such as attosecond streaking

[144]. However, for the purposes of determining whether a train of HHG pulses exists (and a

corresponding spectral supercontinuum) the full amplitude and phase are not absolutely necessary.

Instead, a high-resolution measurement of only the spectral amplitude can be adequate when paired

with knowledge of the coherent nature of the HHG driver and its emission. The first component

of this formula can be obtained through an electric field autocorrelation measurement of the HHG

emission.

2.2 Electric Field Autocorrelation

In an electric field autocorrelation, a laser pulse is interfered with a delayable duplicate

of itself. When the two pulses are not overlapped in time, the incoherent sum of their energies

is measured on the detector. When overlapped, the interference between the electric fields will
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increase or decrease the measured signal. Mathematically, the measured intensity is:

IM (τ) =

∫ tI/2

−tI/2
|E(t) + E(t− τ)|2 dt (2.2)

Here, tI is the integration time of the detector, and τ is the temporal delay between the two laser

pulses (tI >> τ). Expanding Eq. (2.2) yields:

IM (τ) =

∫ tI/2

−tI/2

(
|E(t)|2 + |E(t− τ)|2

)
dt

+

∫ tI/2

−tI/2
E(t)E∗(t− τ)dt+

∫ tI/2

−tI/2
E∗(t)E(t− τ)dt

= 2I0 +A(τ) +A∗(τ)

(2.3)

Thus, the measured signal on the detector is the sum of the pulses’ average intensities (I0) plus the

field autocorrelation function A(τ) and its complex conjugate. According to the Wiener-Khinchin

theorem, the Fourier transform of A(τ) is the power spectrum of E(t) (though the spectral phase

cannot be extracted through A(τ)). Measurement of A(τ) is the basis for Fourier transform spec-

troscopy.

The electric field autocorrelation of the HHG signal provides a solution to the challenge of a

spectral measurement with simultaneously high resolution and range. These characteristics of the

measurement do not rely on a physical number of CCD pixels, but instead rely on the number and

spacing of delays τ . For a measurement with Nτ delay positions, each spaced δτ apart (giving a

temporal range ∆τ = Nτδτ), the spectral range ∆E and spacing δE that can be achieved are:

∆E =
2π~
δτ

δE =
2π~
∆τ

=
2π~
Nτδτ

(2.4)

2.3 HHG Pulse Train and Coherence

For a particular half-cycle of the driving laser pulse, electrons will tunnel ionize, propagate,

and recombine during the following half-cycle. In the quantum picture of HHG, emission results

from two parts of the electron wavefunction interfering with themselves. Because both components

of the electron wavefunction stem from the same initial state, there is a strong coherence between
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the two portions and the quantum phase upon recombination should develop in a consistent way.

Aside from possible scattering from adjacent atoms, there is no reason to believe decoherence

should occur during the three step model. Additionally, the electron dynamics during the three-

step model are inherently coupled to the driving laser dynamics, so it follows that the HHG emission

will be coupled to and coherent with the driving laser. Finally, for a monochromatic driver, the

microscopic picture of HHG should be consistent between neighboring half-cycles (aside from a

sign-flip). As such, there is no reason to believe that a burst of harmonics originating from a given

half-cycle should have a random phase offset compared to a neighboring harmonic burst. There

can be phase shifts associated with a temporally-varying driving envelope or with chirped driving

pulses, but these phase shifts would not be random. Therefore, there would be some amount of

coherence between the different pulses within the train of HHG emission. In fact, the characteristic

HHG spectrum that contains harmonics separated by 2ωL demonstrates that coherence must be

maintained across different pulses in the HHG train (since random phase variations would wash

out the modulations observed in the spectral domain).

This conclusion pertains to the measurement of the electric field autocorrelation since delaying

the HHG pulse train with respect to itself will inevitably result in pulses overlapping and interfering

with different pulses within the train. Consistent interference signatures would not be measurable if

there were a mechanism for random phase decoherence between neighboring pulses. As an example,

consider a train of N + 1 pulses:

Etrain(t) =

N/2∑
n=−N/2

En exp

−
(
t− nλL2c

)2

dt2

 ei(ωqt+φn) (2.5)

Here, each pulse has its own field amplitude En and absolute phase φn. Inserting this into Eq.

(2.3):

IM (τ) =

 N/2∑
n=−N/2

I0,n +An(τ) +A∗n(τ)

+

∑
n 6=m

Xnm(τ) +X∗nm(τ)

 (2.6)

where An(τ) is the individual field autocorrelation function for pulse n (neglecting all other pulses),
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and:

Xnm(τ) =

∫ tI/2

−tI/2
EnEmexp

−
(
t− nλL2c

)2
+
(
t− τ −mλL

2c

)2

dt2

 ei(ωqτ+φn−φm)dt (2.7)

The interaction between different pulses within the train (inter-pulse cross-correlations) is contained

within Xnm, which will result in a nonzero contribution for delays near τ = lλL2c , where l is an integer

spanning from −N to +N , excluding 0. Considering the contributions from An(τ) and Xnm(τ),

PM (τ) will result in a total of 2N+1 interference signatures (for N+1 pulses in the original train).

From a temporal perspective, the HHG field autocorrelation can provide a direct measurement

of the number of pulses within the HHG pulse train. By removing the DC contribution (
∑

n P0,n)

and performing a Fourier transform, the HHG power spectrum is acquired. Thus, measuring the

electric field autocorrelation is a powerful approach to probe temporal and spectral aspects of the

HHG source with high resolution in both domains, despite the lack of temporal phase information.

Although the field autocorrelation can measure spectral bandwidths (and thus transform-limited

pulse durations), it cannot be used to measure the actual HHG pulse duration, which may be

broadened due to chirp.

2.4 Experimental Apparatus

To drive the experiment, a 1-kHz Ti:sapphire laser is used to supply near-infrared 0.8 µm light.

It is also used to pump a three-stage optical parametric amplifier (Light Conversion HE:TOPAS) to

generate 1.3 and 2.0 µm light. All three wavelengths are then used to drive HHG in a 2-mm-long,

Ar-filled gas cell in a Gaussian focus geometry (Fig. 2.1). Second-harmonic FROG was used to

measure the pulse durations for all three driving wavelengths, and these were adjusted to ensure

consistent ∼ 10 cycle pulses (24 fs at 0.8 µm - 9.5 cycles, 35 fs at 1.3 µm - 8 cycles, and 90 fs

at 2.0 µm - 13.5 cycles). The resulting harmonic cutoff energies were used to estimate the laser

peak intensities in the focus, using the single-atom cutoff scaling from Eq. (1.22). Optimal phase-

matching was obtained via longitudinal translation of the focusing lens, which adjusts the focal

position with respect to the medium (Section 1.4.3).
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Figure 2.1: Experimental apparatus used to measure the HHG field autocorrelation. Phase-
matched harmonics are generated in an Ar-filled cell, transmit through thin metal filters (eliminat-
ing the residual fundamental beam), refocused by a Kirkpatrick-Baez mirror pair, spatially split
and temporally delayed by a beam separator, and finally measured on an X-ray CCD. Adapted
from [18].
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To perform the electric field autocorrelation, the HHG output was sent through a glancing

incidence interferometer consisting of refocusing optics (a Kirkpatrick-Baez cylindrical mirror pair)

and an in-line partially-split-mirror spatial beam separator. The separator is able to delay one

half of the beam with respect to the other half with a temporal resolution of ∼ 1.5 as (Fig. 2.1).

After some propagation, the two halves of the HHG mode overlap and interfere at an X-ray CCD

(Andor), where the field autocorrelation of the HHG pulse is acquired. Spatial fringes arise from

the crossing of the two replicas of the HHG beam at the CCD. Because the beam is focusing as it

reflects from the beam separator, each half of the mode will have opposing transverse wavevectors

~k1,x = −~k2,x. At the CCD, the measured intensity is:

ICCD(x, y) =
∣∣∣E1(x, y)ei(k1,zz+k1,xx−ωqt) + E2(x, y)ei(k2,zz+k2,xx−ωq(t−τ))

∣∣∣2
= |E1(x, y)|2 + |E2(x, y)|2 + E1(x, y)E∗2(x, y)ei(2k1,xx−ωqτ) + c.c.

(2.8)

The third term and its complex conjugate result in a spatial modulation factor cos(2k1,xx− ωqτ).

As τ is varied, the absolute phase within the cosine will change, shifting the observed fringes along

the x-direction.

To extract the autocorrelation, the amplitude at a single pixel on the CCD could be monitored

as a function of delay, yielding a signal of the form described in Eq. (2.6). However, the selection of

a single pixel is fairly arbitrary and does not make use of the information gathered by other pixels.

An effective alternative would use all of the modulation information, which can be obtained through

the use of a spatial Fourier transform of the CCD image. The result will be an image in the spatial

frequency domain, where there will be a large DC peak corresponding to F{|E1(x, y)|2+|E2(x, y)|2},

as well as two side peaks corresponding to F{cos(2k1,xx − ωqτ)}. By extracting the amplitude

and phase of one of these side peaks as a function of τ , the field autocorrelation function A(τ)

is immediately obtained. Figure 2.2 shows an example of this procedure using real data. This

technique can improve the fidelity of the autocorrelation because the side peaks represent the

integrated modulation signal across the entirety of the overlap area of the crossed beams.
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Figure 2.2: Spatial interference measured on a CCD from an HHG beam crossed with a replica of
itself for a single delay τ . Performing a Fourier transform yields three peaks: one corresponding to
the DC signal and two from the modulation signal. A single side peak contains information about
the field autocorrelation function A(τ).
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2.5 Field Autocorrelation Results

Figure 2.3 shows the measured HHG field autocorrelations and the resulting spectra (via

Fourier transforms) using low and high laser intensity conditions for each of the three driving laser

wavelengths mentioned above. The HHG cutoff energy and flux from Ar was optimized through

the driving intensity, which identifies the high-intensity case that is plotted. Reducing the intensity

to shift away from optimal HHG conditions then gives the results for the low-intensity case. For

a 0.8 µm driver, the low and high intensities are 1.5 × 1014 and 2.6 × 1014 W/cm2, which result

in 15 and 9 X-ray bursts observed in the autocorrelation, respectively. For a 1.3 µm driver, the

low and high intensities are 1.3 × 1014 and 2.1 × 1014 W/cm2, which result in a faster reduction

in measured X-ray bursts: 9 to 4. Finally, for a 2 µm driver, we measure a single isolated burst

of harmonics for the high intensity case of 1.6 × 1014 W/cm2. Furthermore, the single burst case

(high intensity) corresponds to higher HHG flux than the HHG pulse train case (low intensity).

The HHG spectrum from the 2 µm, high-intensity driver spans from 90 to 180 eV with a FWHM

bandwidtih of ∼ 60 eV. This spectrum has a transform-limited pulse duration of ∼ 35 as, verified by

the measured electric field autocorrelation that has a 70 as FWHM (as expected for Gaussian-like

pulses). As discussed through Fig. 1.14, the HHG emission is expected to be emitted with linear

chirp, giving a predicted pulse duration of ∼ 300-as (discussed below). To our knowledge, our

temporal/spectral measurement of the 2 µm, high-intensity driven HHG has, to date, the highest

photon energy and broadest bandwidth of any measured isolated attosecond pulse [112]. Following

suggestions by previous experiments [123, 143], we also have concluded that the HHG spectrum

and number of pulses are not dependent on the carrier-envelope phase (CEP) of the driving laser,

since the CEP of the 2 µm laser was varied in our experiment with no observed change.

We assert that as long as the harmonic emission maintains pulse-to-pulse coherence (as

described in Section 2.3 and being consistent with previous studies of HHG [94, 90]), then the

field autocorrelation measurements presented here are sufficient to support the wavelength and

intensity scalings of a phase-matching gating effect in the temporal domain, as detailed in the next
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Figure 2.3: Comparison of the measured HHG field autocorrelation data from Ar, driven by ∼ 10
cycle laser pulses at wavelengths of (A) 0.8 µm, (B) 1.3 µm, and (C) 2 µm under high and low laser
intensity conditions (red and blue lines) described in the text. (Left) Field autocorrelation of the
HHG field and enlarged view near time 0 with the coherence time of the central pulse envelope.
The temporal phase-matching window is highlighted in yellow. Note that the bandwidth-limited
pulse duration is half of this coherence time. (Right) HHG spectra obtained from the FFT of
the field autocorrelation traces (filled-area plots), showing excellent agreement with the spectra
obtained using a Hettrick grating spectrometer (black dotted lines). The low-intensity spectra are
enhanced to see their harmonic structure. The predicted phase-matching cutoffs are indicated by
green dashed lines. Adapted from [18].
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section. This assertion, reliant on the temporal coherence of the harmonic emission, is further

supported by the high level of spatial coherence measured across the entire beam of phase-matched

HHG driven by mid-IR lasers [149, 161, 155]. Additionally, simulations have been performed to

represent the unphysical case of drastically different chirps between neighboring HHG bursts. Even

in these simulations, the electric field autocorrelation would contain indications of multiple pulses

interfering at the detector.

Presented as an alternative to attosecond streaking, the field autocorrelation gives a direct

measurement of the number of pulses in the HHG train (i.e. a total of 2N + 1 fringes will be

measured if there are N +1 bursts in the pulse train). This can be useful in providing fast feedback

in the experiment when optimizing the HHG source. Observing a supercontinuum spectrum from

a grating spectrometer could be considered for fast feedback, but the spectrometer’s resolution

would need to be able to sufficiently resolve individual harmonics. Due to the limitations of grating

spectrometers explained in Section 2.1, the field autocorrelation could be more effective, especially

for harmonics driven by long wavelength, low individual photon energy lasers. Through the fast

Fourier transform (FFT), the spectral resolving power is governed by Heisenberg’s uncertainty re-

lation: δE = 2π~/∆τ , where δE is the FFT spectral resolution and ∆τ represents the maximum

temporal delay range. Our spatial beam separator is capable of a delay range of ∆τ ∼ 300 fs,

corresponding to an impressive spectral resolution of δE ∼ 0.01 eV (2.0 µm driven odd harmonics

would be separated by 0.62 eV). This level of spectral resolution is necessary to unambiguously

determine whether the HHG spectrum contains individual harmonics or is supercontinuous, par-

ticularly since mid-IR driven HHG can contain orders up to 5,000 [161]. Finally, this technique

directly probes the temporal domain, giving insight into the dynamic phase-matching conditions

of the HHG process and its trends with driving intensity and wavelength.

2.6 Phase-Matching Gating Theory

The decreasing trend in number of pulses within the HHG pulse train as the driving wave-

length and intensity are increased can be explained through a dynamic picture of phase-matching.
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Phase-matching is supported only during a narrow temporal window within the laser pulse. On the

leading edge of the laser pulse, the laser phase velocity vφ < c (speed of light) due to the dominance

of neutral atoms. In contrast, on the trailing edge, the laser phase velocity vφ > c due to ionization

of the gas beyond the critical ionization level, which terminates phase matching [160]. In the case

of mid-IR driving lasers, three factors lead to a much shorter phase-matching window compared

with 0.8 µm lasers: the harmonic order is higher, the period of the driving wave is longer, and

the phase-matching pressure and ionization density are higher. Each of these factors contributes

to a larger phase shift within each half-cycle and, therefore, to a shorter phase-matching window

(Fig. 2.4). In contrast, for laser intensities below the critical ionization limit, optimal pressure

and ionization are low, the harmonic order is low, and phase matching extends over many laser

cycles. The practical consequence of this physical scaling is that for any driving laser wavelength,

the temporal phase-matching window can be narrowed by increasing the driving laser intensity and

gas pressure. However, for longer driving laser wavelengths, the temporal narrowing effect is much

stronger, making isolated attosecond pulse generation more robust and natural.

The phase-matching theory detailed in Section 1.4.1 supports these findings when calculated

dynamically. The terms of the phase-mismatch equation that vary with respect to time are those

that have dependence on the ionization level. Thus, ∆kmedium is the only dynamic component to

consider, while the geometric terms remain constant. Taking a temporal derivative of Equation

(1.73) yields:

∂∆k(t)

∂t
≈ qP̄

[
2π

λL
∆δ0 +NareλL

]
· dη1(t)

dt

∝ qP̄λL
dη1(t)

dt

(2.9)

The rate at which ∆k(t) sweeps past zero (compared to the period of the driver) provides an

indication for the number of half-cycles that can be phase-matched. Note the neutral gas dispersion

contribution in Eq. (2.9) is negligible compared with the free-electron dispersion contribution,

especially for long-wavelength driving lasers. At low laser intensities, the harmonic order q and

dη1(t)/dt are small, which suppresses phase-matching gating, in agreement with the data of Fig. 2.3
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(low intensity autocorrelation). Near optimal phase-matching, the pressure P̄PM , and the central

harmonic order qPM scale by the laser wavelength as P̄PM ∝ λ2
L and qPM ∝ λ2.7

L , as have been

observed experimentally [160, 149, 161]. The scaling of qPM arises from two contributions: a factor

of 1/2·λ1.7
L because the central energy of the attosecond burst is half the phase-matching cutoff [160],

and an additional factor of λL from the fundamental laser photon energy. Thus, under optimal

phase-matching conditions, Eq. (2.9) can be approximated by ∂∆k(t)/∂t ∝ λ5.7
L · dη1(t)/dt, which

scales strongly with the wavelength of driving laser. The combined effects of higher pressures,

higher harmonic orders, and stronger free-electron dispersion for long-wavelength driving lasers

creates a large phase-mismatch jump between adjacent half-cycles of the driving laser. Note that

the larger separation between half-cycles for long wavelength driving lasers further isolates the

attosecond bursts. Consequently, a longer wavelength driving laser can much more easily induce

strong phase-matching temporal gating. Figure 2.4 depicts the time-gated phase-matching effect

using the conditions of the experiment.

Figure 2.4: Calculated phase mismatch ∆k (blue line), Lcoh (red line and yellow highlight), and
instantaneous HHG cutoff photon energy (green) for HHG in Ar driven by 10-cycle laser pulses:
(A) 0.8 µm, 2.42×1014 W/cm2; (B) 1.3 µm, 1.87×1014 W/cm2; and (C) 2.0 µm, 1.5×1014 W/cm2.
The temporal window during which phase matching occurs is highlighted in yellow. Adapted from
[18].

In addition to the analytic approach to understand the phase-matching gating effect, an

advanced 3D numerical calculation was performed to simulate the microscopic generation of HHG

and its macroscopic propagation to the detector. The gas medium is discretized into individual
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radiators, whose emission is individually propagated to the detector:

Ej(rd, t) =
qj ŝd

c2|rd − rj |

[
ŝd × aj

(
t−
|rd − rj |

c

)]
(2.10)

where qj is the charge of an electron at position j, ŝd is the unitary vector pointing from that

electron to the detector, and rd and rj are the position vectors of the detector and of the elemen-

tary radiator, respectively. Each radiation source has a dipole acceleration aj that is calculated

using SFA+, an advanced strong-field approximation (SFA) method [98]. aj gives rise to coherent

radiation that propagates at a phase velocity c to the far-field detector, where the coherent sum of

all of the emitters’ contributions is calculated. Macroscopic effects are incorporated into the calcu-

lation through the fundamental field, which exhibits time-dependent phase- and group-velocities.

Dispersion from plasma and neutral atoms are considered, and Beer’s law accounts for the reab-

sorption of the harmonics by the gas in the 2 mm argon gas cell assuming uniform density, for a

variety of pressures. The 2 µm fundamental field was modeled using an 8-cycle FWHM Gaussian

envelope in the time domain (53 fs). A peak intensity of 1.2 × 1014 W/cm2 was chosen to satisfy

phase-matching (∆k = 0) at the center of the pulse.

In Fig. 2.5, the HHG emission for single-cycle and multicycle drivers (1.5-cycle and 8-cycle

pulses, respectively) are contrasted for low, moderate, and high pressures. Group velocity walk-off

effects are evident in the single-cycle results, whereas strong phase-matching gating is observed

for the multicycle case at high pressure. Figure 2.5 A-F show the fundamental laser field at the

entrance and exit of the gas medium. For higher pressures and multicycle drivers, the neutral atom

contribution is large for the front of the pulse, creating a phase shift at early times. The time-

varying plasma content in the middle and end of the pulse creates a chirp for later times. These

effects confine the temporal window over which phase-matching occurs, down to a suboptical cycle

duration (300 as) near the center of the pulse. Figure 2.5 H reveals that an isolated attosecond

HHG pulse is emitted with linear chirp (group delay dispersion ∼ 0.005 fs2). For high pressures and

1.5-cycle drivers, the group velocity walk-off causes the fundamental laser field envelope to shift

away from the initial phase-matching window. Through propagation, the effective phase-matching



79

window is nonexistent, thus preventing bright HHG for the single-cycle case.

Group velocity walk-off does occur for longer duration drivers (Fig. 2.5 F), but the envelope

varies slowly enough in intensity that the walk-off does not significantly reduce the phase-matching

conditions at the center of the pulse. In both the low pressure (5 Torr, Fig. 2.5 G) and high

pressure (600 Torr, Fig. 2.5 H) cases, the positive slope of the emission structure in chronocyclic

space indicates the short electron trajectories are phase-matched (recall Fig. 1.14). Despite the

chirp that stretches the HHG pulse to ∼ 300 as, the phase-matched HHG bandwidth obtained from

Fig. 2.5 H (∼ 60 eV FWHM) corresponds to a transform-limited pulse duration of ∼ 35 as. These

spectral and temporal characteristics agree with the empirical measurements to a high degree.

2.7 Phase-Matching Gating Summary

In summary, we present an alternative method to measure the temporal and spectral charac-

teristics of HHG emission through the use of an electric field autocorrelator. To our knowledge, we

have observed the first isolated attosecond pulses measured in the soft X-ray region, with sufficient

temporal resolution (1.5 as) to resolve individual harmonic bursts (and harmonic orders). Through

phase-matching gating, we demonstrate the benefit of mid-IR lasers to naturally and robustly pro-

duce bright isolated attosecond pulses up to 180 eV. This also represents, to our knowledge, the

first experimental verification of the time-dependent balance of plasma and neutral atom disper-

sions through a direct measurement of the HHG emission in the time domain. We present a new

understanding of the wavelength, pressure, and intensity scalings of the phase-matching dynamics,

which surprisingly indicate that efficient generation of bright isolated bursts of harmonics in the

EUV necessitate multicycle driving pulses to avoid group velocity walk-off effects. Additionally,

CEP-stabilization and few-cycle laser technologies are not necessary to produce stable, isolated

attosecond pulses. It is predicted that this approach can be extended to generate single digit

attosecond and even zeptosecond pulses in the keV region [105, 161]. Our results provide fur-

ther insight into the attosecond physics of high intensity laser-matter interactions and frequency

conversion driven by mid-IR laser light.



80

Figure 2.5: SFA+ calculations of microscopic and macroscopic HHG emission, demonstrating
phase-matching gating and group velocity walk-off effects for 1.5-cycle and 8-cycle drivers at low
(5 Torr), moderate (100 Torr), and high (600 Torr) pressures. For a 2 mm argon gas cell, entrance
(red) and exit (blue) laser fields are plotted in A-F. Phase-matching intensities of 1.3×1014 W/cm2

and 1.2× 1014 W/cm2 are used for the single- and multicycle fields, respectively. The driving laser
mode was assumed to be a Bessel profile of radius 60 µm. The phase-matching gating window is
highlighted in yellow. The HHG emission in chronocyclic space is plotted for the 8-cycle driver
at (G) 5 Torr and (H) 600 Torr. Isolation of a 300 as chirped pulse occurs for the high pressure
scenario (H). Phase-matching over an extended distance is not possible for a 1.5-cycle driver due
to group velocity walk-off effects. Adapted from [18].



Chapter 3

Water Window and Soft X-ray HHG Spectroscopies

1 Aside from the complex temporal aspects of mid-IR driven HHG, the spectral characteristics

have been shown to follow the macroscopic cutoff scaling law from Eq. (1.89): EPMC ∝ λ(1.6−1.7).

Mid-IR drivers are especially suitable for generating broad supercontinua with utility in spec-

troscopy applications. In this chapter, we demonstrate the use of table-top HHG sources for the

spectroscopic interrogation of thin samples with absorption edges in the water window (defined by

the K-edges of C and O: 284–541 eV) and soft X-ray regimes (> 1 keV) (Fig. 3.1). The 1.2 - 2.4

µm output from the HE:TOPAS described in Chapter 2 is used, in addition to 3.9 µm idler light

from a 1.064 µm pumped, 1.460 µm seeded OPCPA [139, 161]. Aside from HHG spectroscopies

being useful in determining the elemental composition of unknown samples, the nanoscale atomic

structure of pure samples can be revealed through a measurement called X-ray Absorption Fine

Structure (XAFS). Three experimental XAFS measurements using the two aforementioned mid-IR

HHG drivers will be detailed here.

3.1 XAFS Theory

Atomic absorption spectra contain sharp features corresponding to energetic transitions.

From a single-atom perspective, electron transitions govern the spectral locations of the observed

absorption edges. Photon absorption can result in electron transitions between bound orbitals as

well as photoionization to continuum electron states. In molecules, elemental absorption edges and

1 The experiment and results described in this chapter have been submitted for publication [135].
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Figure 3.1: Absorption spectra for various elements in the water window and soft X-ray regimes.
A material thickness of 50 nm is used for all curves. Data retrieved from the CXRO database [63].
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the surrounding spectral structure can be modified due to the presence of neighboring atoms and

the chemical bonds that are formed. Several molecular factors can influence the near-edge absorp-

tion structure (NEXAFS), such as oxidation and magnetic states, or localized charge to specific

atoms in the molecule or lattice. Spectroscopic measurements near the absorption edge can give

information about the electronic band structures, as well as orbital and spin ordering phenomena.

The molecular orientation with respect to the incident light wave’s polarization can also influence

the NEXAFS measurement.

In ordered solids, atoms form a crystallographic lattice with consistent inter-atomic spacing.

Even with one type of element present, the single-atom absorption spectrum can be modified due to

the presence of neighboring atoms. This phenomenon can be understood in a three-step quantum

model, where an atom absorbs an incident X-ray, causing it to eject a core-shell photoelectron.

Scattering of the photoelectron from neighboring atoms leads to quantum interferences between

the outgoing and incoming electron waves (Fig. 3.2). The interferences produce modulations in

the X-ray absorption spectrum past the absorption edge, and can extend to significantly larger

photon energies. The information contained within the interference structure is not limited to only

single rescatterings, but can also be influenced mulitple scattering events. In the electron scattering

picture, an XAFS function χ(k) can be used to model the absorption probability of the incident

X-ray photon:

µ− µ0

∆µ0
= χ(k) ∼=

∑
i

Nifi(k)

kR2
i

sin(2kRi + δi(k))e−2k2σ2
i−2Ri/λ(k) (3.1)

Here, the left hand side is measured experimentally; µ is the total absorption coefficient for the

lattice or molecule, while µ0 corresponds to the absorption from an isolated atom. The right hand

side of Eq. (3.1) is the theoretical formula used to fit the data; different electron scattering paths

labeled by i generate different modulation frequencies in the XAFS absorption spectra. fi(k) is

the backscattering amplitude, Ni is the number of scattering atoms in a particular shell (Fig. 3.2),

δi(k) is the total phase shift from both absorption and rescattering, λi(k) is the electron mean

free path, Ri is the half path length between the absorbing atom and the i coordination shell of
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scattering atoms (for single scattering), σi is a disorder parameter, and k is the electron wave

number: k
[
Å
−1
]
≈ 0.512

√
(E − Eedge)[eV ].

Due to the tight packing of atoms within the lattice, the interferences occur on very short

time scales. This results in long periodicity modulations in the spectral domain, requiring a broad

spectral probe that extends well past the absorption edge to sufficiently resolve the modulations.

Thus, measuring the fine structure of solid samples with Å-resolution is labeled extended-edge

XAFS (or EXAFS). Figure 3.2 depicts the electron interferences and chemical environments that

result in EXAFS and NEXAFS effects.

Figure 3.2: (Left) Illustration showing the scattering paths of photoelectrons from the first (path
1) and second shell (path 2), as well as secondary rescattering (path 3). (Center) Photoelectron
scattering and interference of the electron-wave packet for a 2D planar lattice. (Right) XAFS
sensitivity to the polarization ~ε and final ~λf orbital direction. Adpated from [135].

3.2 NEXAFS in Polymers

To measure the NEXAFS signatures at the carbon K-edge near 284.2 eV, water-window HHG

light is produced using an OPA pumped by a 19.5 mJ, 20 fs, 1 kHz repetition rate Ti:Sapphire laser.

Because of the high peak intensities achievable with these laser specifications, nonlinear effects in

air can prove detrimental to the experiment and OPA process. Thus, the 20 fs Ti:Sapphire pulses

are stretched to > 150 fs to reduce the peak intensity for beam paths before the OPA. The pulse is

then recompressed just before each stage of the OPA using chirped mirrors. This allows the beam

to maintain excellent mode quality and pulse shape for efficient generation of several-cycle mid-IR
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light. The OPA output at the idler wavelength of 2.1 µm is set to an energy of 2.75 mJ and a

duration of ∼ 26 fs (four cycles). The signal at 1.5 µm wavelength is produced with an energy of

4.5 mJ and a duration of ∼ 24 fs (five cycles). These driving pulses are then coupled into hollow

dielectric waveguides (Appendix A) with inner diameters ranging from 150 and 400 µm and lengths

between 1 and 5 cm. ∼ 10− 20 atm of helium gas is supplied to the waveguide for phase-matched

HHG at these mid-IR wavelengths. The signal driver results in a HHG supercontinuum spanning

photon energies up to 360 eV, while the idler produces a supercontinuum up to 550 eV. A photon

flux of > 109 photons/s/1% bandwidth was measured in the water window region: three orders of

magnitude larger than previously demonstrated [149, 121].

Following the HHG medium, our experimental beamline consists of an X-ray spectrometer

(Hettrick) with a resolution in the EUV and soft X-ray regions of λ/∆λ > 1000. The XAFS

samples and metal filters are placed between the spectrometer grating and the X-ray CCD camera

(Andor). Metal filters are used to reject the fundamental driver from the HHG supercontinuum,

while also allowing calibration of the spectrometer using characteristic absorption edges of foil

filters. Differential measurements with and without the XAFS samples allow the determination of

the spectrally-resolved absorptivity with high accuracy. The data is then analyzed with Athena

and Artemis software [107].

The HHG spectrum resulting from the 1.5 µm driver is plotted in pink in Fig. 3.3. This

broadband source was used to illuminate two polymers, mylar and parylene, which contain similar

carbon structures but different neighboring elements. Figure 3.4 shows the experimental results,

demonstrating the ability of HHG spectroscopy to differentiate between chemical compounds using

NEXAFS, despite the degree of chemical similarity and the common probe of the carbon K-edge.

Our measurements have a spectral resolution 0.2 eV, which is sufficient to identify a 0.2 eV difference

in the ∼ 285 eV absorption peak between the mylar and parylene samples. In both samples, this

peak near 285 eV corresponds to electron transitions from the 1s core shell of carbon to the molecular

antibonding π∗ orbital for unsaturated C=C bonds (sp2 hybridization). The energy shift between

the two samples is clear for this absorption peak. There is an additional peak near ∼ 289 eV
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Figure 3.3: Broadband soft X-ray supercontinua generated using phase-matched HHG. Photon
energies up to 0.36 keV, 0.55 keV, and 1.6 keV are generated in He gas using mid-IR driving lasers
at 1.5 µm (OPA signal), 2.1 µm (OPA idler), and 3.9 µm (OPCPA idler), respectively. Adapted
from [135].
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corresponding to electron transitions from two contributions: the 1s core shell to the antibonding

σ∗ molecular orbital, as well as the 1s core shell to the Rydberg-like 3p orbitals of the aromatic

ring (benzene) [76]. One consideration for this measurement is the relative angle between the

HHG polarization (~ε) and the molecular orientation (final orbital direction ~λf ), an angle ϑ
~ε,~λf

that

introduces an absorption probability factor of cos2(ϑ
~ε,~λf

). The polarization ~ε in our experiment

lies within the plane of the samples.

3.3 XAFS in Scandium

Using the 2.1 µm OPA idler to drive HHG results in the purple HHG spectrum in Fig.

3.3, which covers a significant range of photon energies beyond the scandium L-edge. Figure 3.5

shows the experimentally extracted XAFS function at the L-absorption edge of a monoatomic

hexagonal-close-packed (hcp) Sc thin foil at the 398 eV L-absorption edge at room temperature,

both in k-space and in real space. By taking a Fourier transform of the XAFS function in k-space

(Fig. 3.5B), the interatomic spatial distributions can be obtained (Fig. 3.5C). Using the Athena

and Artemis software [107], the spatial distribution data was fit to Eq. (3.1) to yield first- and

second-shell distances of 3.25± 0.05 Å(six-fold degenerate) and 3.30± 0.05 Å(six-fold degenerate),

respectively. Our spectral measurements agree very well with the CXRO database [63], and the

extracted shell distances agree well with the expected interatomic lengths for a Sc hcp bulk lattice.

Thus, our thin film samples (∼ 150 nm) are confirmed to have lattice constants similar to bulk

values.

3.4 EXAFS in Iron

To investigate the extended-edge XAFS signal (EXAFS) of a material, significant source

spectrum is required beyond an absorption edge. Investigating a magnetically relevant material

such as iron would then require HHG signal well beyond its L-edges near 0.7 keV. To achieve such a

broadband spectrum, an OPCPA with an idler wavelength of 3.9 µm was used [139]. The OPCPA

operated at a repetition rate of 20 Hz with 80 fs pulse duration, ultimately producing an HHG
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Figure 3.4: Experimental NEXAFS spectroscopy near the carbon K-edge using a 1.5 µm-driven
HHG supercontinuum up to 360 eV. A) NEXAFS of C-containing polymers (mylar (violet) and
parylene (pink)), at the carbon K-edge. Also plotted is the experimental absorption spectrum of a
carbon thin film (black) for reference. B) Close-up view showing peaks due to transitions from 1s
to both π∗ and σ∗ orbitals. C) Molecular structure of mylar and parylene rendered for trimers (C
atoms in brown, O in red, H in white). Adapted from [135].
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Figure 3.5: Experimental XAFS spectroscopy near the Sc L-edge, using a 2 µm-driven HHG
supercontinuum up to 550 eV. (A) The normalized absorption coefficient of Sc near the L-absorption

edge at 398 eV. (B) k2-scaled EXAFS function in k-space extending to > 5Å
−1

. (C) Experimental
R-space XAFS function (blue), not corrected for δ phase shifts, and fitted (red) to Eq. 3.1. The
real space XAFS function exhibits a broad peak. Inset shows a Sc hcp unit cell. Adapted from
[135].
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supercontinuum spanning the EUV and into the soft X-ray spectral region up to 1.6 keV (∼ 7.7 Å)

with ∼ 2× 106 photons/s/1% bandwidth at ∼ 1 keV (orange spectrum in Fig. 3.3).

Figure 3.6 shows the k-space and real space XAFS function obtained at the L-absorption edges

of a room-temperature monoatomic body-centered-cubic (bcc) Fe thin foil. The fitting procedure

yields first- and second-shell distances of 2.48±0.03 Å(eight-fold degenerate) and 2.87±0.03 Å(six-

fold degenerate), respectively. The latter distance is the lattice constant for a bulk bcc Fe unit cell.

Figure 3.7 shows X-ray diffraction measurements on the same sample, independently confirming

the bcc crystal structure with a lattice constant of 286.68± 0.03 pm.

It can be challenging to distinguish features from multiple rescattering paths, so we also

decompose the XAFS function terms using a continuous Cauchy wavelet transform (CCWT) (Figure

3.6A [89]). This 2D plot can help discriminate shell distances by providing information regarding

the k and R ranges that each nearest neighbor shell can contribute to (Figure 3.6C).

3.5 XAFS Summary

Through the use of state-of-the-art OPA and OPCPA laser technologies, broadband HHG

spectra were obtained with unprecedented photon energies and fluence. Utilizing these broad HHG

sources for XAFS spectroscopies yielded chemically- and structurally-sensitive data that agree with

theory and independent measurements. This work represents a new benchmark for broadband,

static spectroscopic applications, and can easily be extended to dynamic spectroscopies through the

inherently ultrafast nature of the HHG source (currently under investigation). Coherent, ultrafast

light sources with broader spectral bandwidths than achieved here are limited, and HHG beyond

the soft X-ray regime is yet to be observed. The theoretical limits of long wavelength-driven HHG

will be investigated in Chapter 4, revealing the feasibility of generating higher cutoff harmonics

that could be used for further spectroscopic applications.
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Figure 3.6: Experimental EXAFS spectroscopy of a Fe thin film using a 3.9 µm driving laser
(orange soft X-ray spectrum from Fig. 3.3). (A) CCWT analysis (modulus) near the Fe L-edge

(0.7 keV); (B) k2-scaled EXAFS function in k-space extending to 12 Å
−1

. (C) Experimental real-
space EXAFS function (blue), uncorrected for δ phase shifts, with the first peak fitted to the
theoretical Eq. (3.1) (red). Inset shows a Fe bcc unit cell. Adapted from [135].
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Figure 3.7: X-ray diffraction data showing the first few diffraction peaks for the Fe thin film sample.
The data indicates a body-centered-cubic (bcc) structure with a lattice constant of 286.68 ± 0.03
pm. Adapted from [135].



Chapter 4

The Lorentz Force during HHG

1 To date, HHG has been demonstrated with energies up to a record level of 1.6 keV using

3.9 µm drivers [161]. This achievement was possible according to the phase-matching cutoff scaling

law: EPMC ∝ λ
(1.6−1.7)
L . To extend the HHG photon energy further, increasing the driving laser

wavelength is an obvious route (although more complex geometries described in Chapter 5 and HHG

from ions using ultraviolet drivers [134] are alternative approaches). One consideration that might

limit HHG driven by long wavelengths is the unfavorable flux scaling of λ
−(5−9)
L [161, 120, 42, 98].

Fortunately, many more emitters can be present in very high pressure gases that satisfy long

wavelength phase-matching conditions, which can compensate for the low single-atom HHG yield.

However, acquiring a driving laser that has both ultrafast pulse duration (a requirement for phase-

matched HHG) and central wavelength beyond 4 µm proves to be a challenge. To our knowledge,

there are currently no commercially available broadband gain media that would enable ultrafast

oscillators and amplifiers at mid-infrared wavelengths beyond 4 µm. OPA and OPCPA technologies

are possible solutions using appropriate frequency conversion media in multi-stage configurations

[111], or possibly a single stage pumped using a relatively new ultrafast laser technology operating

near 2.5 µm, Cr:ZnS and Cr:ZnSe [166]. Spectral broadening through self-phase modulation using

10 µm CO2 lasers provides another possibility, but this approach can require further compression

or might result in a multi-pulse structure [104, 101, 100].

Despite the present difficulty in performing HHG experiments with suitable long wavelength

1 The work presented in this section is published in [43] and has been submitted for publication [102].
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drivers, a theoretical investigation of the fundamental physics can be performed. Section 1.2 covers

the zero-order physics of HHG, providing an explanation of the mechanism and predictions that

are consistent with observed phenomena to date. However, several assumptions have been made

during the derivations that hold true only for short wavelengths, non-relativistic intensities, and

plane-wave driving fields. Testing the validity of these assumptions for the case of long wavelength

drivers and realistic laser modes is an important step toward understanding the spectral limitations

of HHG technology. A primary effect that might limit HHG at long wavelengths is the trajectory

of the ionized electron and how it might be influenced by the full Lorentz force.

4.1 The Full Lorentz Force

As previously described by Eq. (1.16), the full Lorentz force that the electron experiences

once ionized is:

F (t) =
dp(t)

dt
= qe [EL(t) + v(t)×BL(t)] (4.1)

By neglecting the magnetic component of the Lorentz force (assuming non-relativistic motion), one

arrives at Eqs. (1.17–1.19). These equations of motion are true to zero-order, and can be used as

a basis to which relativistic (and non-plane-wave) perturbations can be applied. The zero-order

equations of motion are reproduced here (assuming the ionized electron is initially stationary at

the origin):

a0(t) =
qe
me

EL0 cos(ωLt+ φ0)ŷ (4.2)

v0(t) =
qe

meωL
EL0[sin(ωLt+ φ0)− sin(φ0)]ŷ (4.3)

x0(t) = − qe
meω2

L

EL0[cos(ωLt+ φ0) + ωL sin(φ0)t− cos(φ0)]ŷ (4.4)
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The equations of motion can then be rewritten in terms of the zero-order solutions and first order

perturbations:

a(t) = a0(t) + a1(t)

= a0(t) +
qe
me

[
EL1(t)− EL0 cos(ωLt+ φ0)

v0(t)

c
× x̂

] (4.5)

v(t) = v0(t) + v1(t) = v0(t) +

∫ t

0
a1(t′)dt′

= v0(t)+
qe
me

[∫ t

0
EL1(t′)dt′ +

qeE
2
L0

2meω2
Lc

[sin(ωLt+ φ0)− sin(φ0)]2 ẑ

] (4.6)

x(t) = x0(t) + x1(t) = x0(t) +

∫ t

0
v1(t′)dt′

= x0(t)+
qe
me

[∫ t

0

(∫ t′′

0
EL1(t′)dt′

)
dt′′ +

qeE
2
L0

8meω3
Lc

Υ(t, φ0)ẑ

] (4.7)

where:

Υ(t, φ0) = 4ωLt+ 4 sin(ωLt+ 2φ0)− 2ωLt cos(2φ0)−

− 4 sin(ωLt)− 3 sin(2φ0)− sin(2ωLt+ 2φ0)

(4.8)

Here, we have included a perturbation to the electric field EL1(t), which will be necessary when

considering non-plane-wave driving fields.

Equations (4.5–4.8) clearly contain two perturbing contributions. The first is from the first-

order electric field EL1(t), and the second is from the magnetic Lorentz force arising from v0(t)×

BL(t). Already, the perturbative effect of the magnetic Lorentz force can be calculated to yield a

v ×B drift at the time the electron would typically recollide with its parent ion, which we define

as:

δv×B =
q2
eE

2
L0

8m2
eω

3
Lc

Υ(τf , φ0)ẑ (4.9)

where the displacement is evaluated at the return time t = τf . From Eq. (4.9), it is clear that the

magnetic Lorentz force causes the electron to drift along the z-direction, and its magnitude scales

as δv×B ∝ ILλ3
L for a constant value of φ0. For all returning trajectories φ0 ∈ [0, π/2), Υ(τf , φ0) is
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positive, meaning the magnetic Lorentz drift is always in the positive z-direction. This is true for

electrons ionized during an up-cycle of the electric field or a down-cycle.

Previous work has considered the effect of the magnetic Lorentz force during strong field

ionization and recollision processes [72, 167, 49, 87, 57, 21], including a work by Walker et al.

in which recollision was suggested to be greatly reduced for driving lasers with λL ≥ 6 µm [92].

However, the laser intensities used in these calculations were much larger than are relevant for

HHG, and a plane-wave driving field was used (i.e. the field’s transverse extent is infinite and

E1(t) = 0). In the following sections, the full Lorentz drift during HHG-relevant conditions will be

considered.

4.2 Field Components for Finite Laser Modes

By removing the assumption of a plane-wave driver, additional field components arise that

can influence the trajectory of the ionized electron. This is a consequence of satisfying Maxwell’s

equations in free-space using finite transverse spatial modes. In particular, a longitudinal electric

field component necessarily arises in linearly-polarized beams:

Ez(t) =
i

k

∂Eψ(t)

∂ψ
, (4.10)

where ψ represents the polarization direction (for all derivations here, ψ = y). This holds true

for the first-order field equations for waveguide modes expressed in Eq. (A.2) in Appendix A, and

is also true for Gaussian modes, as described in [23]. For both a Gaussian mode and the EH11

waveguide mode, the longitudinal electric field Ez(t) qualitatively takes on a two-lobed amplitude

profile with opposing signs for each half, and has a π/2 phase shift with respect to Ey(t) and Bx(t).

Importantly, Ez(t) = 0 for all locations with y = 0, which includes the center of the mode. Figure

4.1 depicts the amplitude profiles for these geometries.

Equation (4.10) indicates that the temporal dependence of Ez(t) is the same as that of Ey(t),

except for a π/2 phase shift. The amplitude of Ez(t) is proportional to EL0λL/w for a Gaussian

mode, or EL0λL/a for the EH11 waveguide mode. Thus, it is straightforward to show that the
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Figure 4.1: Transverse (top) and longitudinal (bottom) field components for Gaussian (left) and
EH11 (right) modes. The axis ranges for the two geometries are chosen to give comparable mode
sizes. Scale bars are normalized.
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perturbation to x(t) resulting from Ez(t) is:

δEz =
qe
me

∫ t

0

(∫ t′′

0
Ez(t

′)dt′

)
dt′′

=
−qeEz(x, y)

meω2
L

[ωLt cos(φ0)− sin(ωLt+ φ0) + sin(φ0)]

(4.11)

where Ez(x, y) represents the spatially varying amplitude of Ez(t) and contains the EL0λL/w

proportionality. Ultimately, the displacement from the Ez component of the driving field scales as

δEz ∝ I
1/2
L λ3

Lw
−1.

For both longitudinal drifts, the scaling with τf , or more fundamentally φ0, cannot be de-

scribed in a simple form; however, the magnitudes of these drifts generally decrease as φ0 increases

from 0 to π/2. The total longitudinal drift resulting from the Lorentz force will be the sum

δL = δv×B + δEz , and the interplay between the two drift components can result in large or small

total Lorentz drift depending on the relative signs of the two drifts, which varies spatially as dis-

cussed in Section 4.5.

4.3 Recombination Probability with Lorentz Drift

If the electron is treated classically, one would expect there to be greatly reduced probability

for the electron to recombine with its parent ion if there is a longitudinal drift larger than a Bohr

radius or so. However, due to the quantum nature of the electron, the electron wavepacket diffuses

transversely as it travels in the continuum, as described in Section 1.3.2. Thus, for any finite

spatial overlap between the diffused wavepacket ψd and the wavefunction of a bound electron ψb,

the probability PR of recombination and emission of a photon is nonzero and modeled by:

PR =

∫
R
d3rψ∗d(r, t = τf )ψb(r) (4.12)

One may also describe the harmonic yield as originating from a time-varying dipole moment, arising

from the interference of ψd(r, t) with ψb(r, t). In either case, the photon yield will be proportional

to PR as well as the ionization rate at the time the electron was ionized ωADK(r0, t = 0) [68, 72, 30].

When ψd(r, t) is evaluated for even the shortest wavelength considered here (0.8 µm), it

becomes evident that the integral describing RP can be reduced. The diffused wavepacket ψd(r, τf )
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returns with a width that is orders of magnitude larger than the width of ψb(r). For the purposes

of integration, ψb(r) can be approximated as a delta function. Instead of applying the Lorentz

drift δL to ψd it is straightforward to apply it to ψb, representing it as a shifted delta function:

ψb(r) = δ(r−δLẑ). Considering only the wavefunction amplitude, the form of PR can be rewritten:

PR = |ψd(δL, τf )|. Note that the drift-induced quantum phase dynamics of the electron can shift

the absolute positions of the harmonic peaks in the spectral domain [102], but should not change

the overall single-atom spectral shape. Only amplitude effects will be considered here.

To determine how the Lorentz drift influences the high harmonic flux, a comparison must

be made between the case when the Lorentz drift is included, and the case when it is assumed

to be zero. The relevant comparison is the ratio of recombination probabilities for the two cases,

expressed as a recombination probability ratio (RPR) defined as:

RPR = PR(δL)/PR(0) =
|ψd(δL, τf )|
|ψd(0, τf )|

(4.13)

The RPR is defined for a single electron ionized during a particular half-cycle of the driving laser,

and has a maximum value of unity corresponding to zero displacement. In the following section, we

quantify how this recombination probability ratio scales with wavelength, indicating a drift-induced

reduction in HHG fluence as the wavelength is increased.

4.4 RPR Scaling with Wavelength

In order to study Lorentz displacement effects under conditions applicable to HHG, the inten-

sity of the driving laser must be chosen to achieve bright, phase-matched HHG flux. Constraining

the intensity to the wavelength also simplifies the investigation by reducing the parameter space.

We assume the target gas is helium and the peak intensity of the driver is optimized for maximal,

mode-averaged, phase-matched HHG flux driven by an 8-cycle pulse, as depicted in Figure 1.20.

With this assumption, and using reasonable values for the laser mode size (w ∼ 50 µm), it becomes

evident that the Lorentz displacement produces a non-negligible effect for wavelengths larger than

∼ 6 µm. Table 4.1 summarizes the relevant wavelength-dependent parameters and the resulting
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Table 4.1: Lorentz displacement results for selected laser wavelengths. The driving laser mode is
assumed to be 100 µm in diameter, and the ionization phase φ0 = 18◦. Maximum values within
the spatial mode are presented for |δv×B| and |δEz |, whereas |δL|symm represents the total Lorentz
displacement at the spatial location along the polarization axis where |δv×B| = |δEz |. The reported
RPRsymm values are for the same location.

λL (µm) IL (×1014 W/cm2) |δv×B| (Å) |δEz | (Å) |δL|symm (Å) σ(τf ) (Å) RPRsymm

0.8 7.58 0.372 0.293 0.455 19.1 0.9997
3.0 4.20 10.9 11.5 15.0 71.1 0.9779
6.0 3.26 67.7 81.1 103 142 0.7671
8.0 2.97 146 183 223 189 0.5000
10.0 2.77 266 346 406 237 0.2298
15.0 2.45 794 1,100 1,213 355 0.0029
20.0 2.25 1,731 2,507 2,648 474 10−7

displacements and RPR values. The net Lorentz drift magnitude |δL| varies across the transverse

spatial dimensions, but a symmetric net drift |δL|symm can be defined at the location where δv×B

is the same magnitude as δEz . This symmetric net drift is listed in Table 4.1, and provides a metric

to estimate when the field-driven electrons will be displaced far enough to miss the ion during one

half-cycle, while trajectories during the next half-cycle (when δv×B and δEz have opposite sign)

directly recollide with the ion. It is important to note that δEz has a magnitude ≥ δv×B when

using the harmonic cutoff ionization phase φ0 = 18◦. Even when considering the Lorentz force in

ultra-strong field experiments, the driving laser typically must be tightly focused to achieve rela-

tivistic intensities (IL > 1018 W/cm2), in which case the contribution from Ez is large and cannot

be ignored. Figure 4.2 serves as a visual aid for the field and drift components in a Gaussian focus

geometry.

Although we have previously derived a λ3
L scaling for each of the longitudinal drift compo-

nents, the optimal intensity for HHG flux scales close to λ−0.4
L . Thus, the final scaling of the total

Lorentz drift will be close to λ2.6
L . Figure 4.3 shows the magnitude of the net Lorentz drift |δL|symm

plotted as a function of wavelength, where its measured slope of 2.62 verifies the wavelength scaling.

The width of ψd upon return to the parent ion σ(τf ) scales linearly with wavelength, and is also

plotted in Fig. 4.3. The inset of Fig. 4.3 shows the effect of |δL|symm on the RPR for adjacent
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Figure 4.2: Field components of a Gaussian free focus (in the waveguide case, the fields are
similar but the guided beam does not diverge). The Gaussian mode envelope is depicted in red,
the transverse fields Ey and Bx oscillate like the purple regions, and the longitudinal field Ez is
depicted by the green regions. The longitudinal displacements due to the v × B force (δv×B),
the longitudinal electric field (δEz), and the total Lorentz force (δL) are shown in two locations
in the focus, where the net displacement changes in magnitude. Top-right: Visualization of the
electron wavepacket drift. Quantum diffusion of the electron wavepacket enables recollision in spite
of significant Lorentz drift.
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half-cycles. For one of the half-cycles δv×B cancels δEz , whereas they add in the next half-cycle.

Thus, the RPR alternates between unity and RPRsymm.

The Lorentz displacement |δL|symm increases at a rate λ1.62
L faster than the diffused wavepacket

width. Accounting for the Gaussian form of ψd, the resulting scaling of RPRsymm (and the total

HHG flux attenuation from the Lorentz drift) is given by:

RPRsymm ∼ exp

[
−
(
δL
σ

)2
]
∼ exp

−({δL
σ

}1.62
)2
 ∼ exp[−(λL[µm]

8.7

)3.24
]

(4.14)

The fitting parameter D was calculated to nicely fit the RPRsymm trend using the data in Table 4.1.

Fitting to the mode- and φ0- integrated RPRsymm for harmonics > 2Up causes the D parameter

to increase to ∼ 13.3, with some underestimation at longer wavelengths. The super-Gaussian form

of Eq. (4.14) encapsulates the initially slow onset of the Lorentz displacement, followed by a steep

reduction of RPRsymm for λL > 6 µm. Note that this flux scaling only accounts for the Lorentz

displacement and will act in addition to the λ
−(5−6)
L scaling from quantum diffusion. Additionally,

it is only true for half-cycles where the two drift components have the same sign. Interestingly,

the flux attenuation due to quantum diffusion is dominant even up to 20 µm drivers, indicating

that the Lorentz drift is not the limiting factor with respect to high harmonic flux driven by long

wavelengths.

4.5 Lorentz Drift Spatial Profiles

In addition to attenuating the total high harmonic flux, the Lorentz displacement also has

a spatial dependence that influences the HHG mode. Figure 4.4 shows the Lorentz displacements

and RPR profile using a Gaussian focus geometry for a single half-cycle of a 10 µm driving laser,

assuming the electron is ionized at the harmonic cutoff phase φ0 = 18◦. The energy of an emitted

harmonic will be 3.17 times the local ponderomotive potential (Up,loc), which depends on the local

intensity. This local energy can be rewritten in terms of the maximum harmonic energy 3.17Up,

occurring at the center of the mode where the intensity is the highest (IL). In Fig. 4.4(d), rings are

plotted where the local cutoff energies correspond to 1 and 2 times the maximum Up. Note that
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Figure 4.3: Total Lorentz drift magnitude (red) and diffused electron wavepacket width (blue)
as a function of driving laser wavelength. The electron is assumed to be ionized at 18◦, and
the laser intensities used are those that maximize phase-matched HHG flux in Helium. |δL|symm

is calculated at the spatial location along the polarization axis where |δv×B| = |δEz |. The lines
intersect at λL = 7.4 µm and 175 Å, after which the Lorentz drift exceeds the wavepacket width. The
inset shows the RPR for adjacent half-cycles where |δL|symm is calculated, indicating a harmonic
efficiency that is modulated in the time domain with λL-periodicity.
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the plots would be reflected about the x-axis for the next half-cycle, due to the sign flip of δEz but

not δv×B.

Figure 4.5 shows the same plots as Fig. 4.4, but for a waveguide geometry with an inside

diameter (I.D. = 2a) resulting in an equivalent mode size (w = 0.6435a, Fig. A.2). Note that the

separate components of the Lorentz drift δEz and δv×B add in one half of the mode, while they

cancel in the other half. While this is, from a flux perspective, detrimental for one half of the mode,

the other half can benefit from the drift cancellation. If the flux for only the highest harmonics

(> 2Up) is to be optimized, the drift cancellation should occur as close to the center of the mode

as possible. By definition, the Ez field is zero at the center, so its resulting drift cannot cancel the

v × B drift, which is maximal at the center. To shift the location of drift cancellation closer to

the center, one can simply inspect the drift scaling laws (δv×B ∝ ILλ
3
L and δEz ∝ I

1/2
L λ3

Lw
−1) to

conclude that the driving laser mode size should be reduced. By changing the relative magnitude

of δEz with respect to δv×B, one can control the spatial position of drift cancellation. In fact, by

specifying a driving wavelength and constraining the intensity to be optimal for HHG, the only free

parameter to control the RPR mode profile is the mode size.

In Fig. 4.6, the HHG photon energy at the location of drift cancellation is plotted as a

function of wavelength and mode size. Generally, the RPR approaches unity at a higher harmonic

energy in waveguides than in a Gaussian focus, for comparable mode sizes. For a 20 µm driver

with optimal intensity of 2.77×1014 W/cm2 in a 250 µm I.D. waveguide, the HHG energy that has

RPR = 1 is approximately 2Up which is ≈ 17 keV. This shows that even very high energy harmonics

in the hard X-ray region can be produced through HHG without the Lorentz drift shutting off the

recollision process. Furthermore, Fig. 4.6 can be used as a guide to select the mode size necessary

for drift cancellation and efficient generation of a desired HHG photon energy.

Although the single-phase harmonic cutoff results in Figs. 4.4–4.6 are informative, the total

HHG mode emitted from a single half-cycle would result from electrons ionized at all phases within

[0, π/2). Ionization phases closer to the peak of the field (φ0 ∼ 0) have the highest ionization

rate (ωADK), but these electrons spend more time (τf ) free from the parent and have a lower
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Figure 4.4: Spatially-resolved Lorentz displacements and resulting recombination probability ratio
(RPR) for a Gaussian focus with λL = 10 µm (IL = 2.77×1014 W/cm2, w = 50 µm, φ0 = 18◦). (a)
δEz , (b) δv×B, (c) δL, (d) RPR. The outer dashed circles represent the inside wall of a waveguide
that this Gaussian mode would couple to optimally. The middle and inner dashed circles in (d)
represent the radii within which 1Up and 2Up HHG can be generated, corresponding to 2.5 keV
and 5.1 keV, respectively.
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Figure 4.5: Spatially-resolved Lorentz displacements and resulting recombination probability ratio
(RPR) for a EH11 waveguide mode with λL = 10 µm (IL = 2.77× 1014 W/cm2, I.D. = 2a = 150
µm, φ0 = 18◦). (a) δEz , (b) δv×B, (c) δL, (d) RPR. The outer and inner dashed circles in (d)
represent the radii within which 1Up and 2Up HHG can be generated, corresponding to 2.5 keV
and 5.1 keV, respectively.
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Figure 4.6: Energy of the harmonic emitted at the location of drift cancellation, corresponding
to RPR = 1. The color scale corresponds to energies in terms of the ponderomotive potential
Up ∝ ILλ

2
L, while the dashed lines indicate energy contours in keV. The cutoff ionization phase

φ0 = 18◦ is used. The Gaussian focus geometry is shown in (a), while the waveguide geometry is
shown in (b). The vertical axes of both plots give comparable mode sizes.
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probability of recombining. For later phases, the low field strength results in reduced ionization

rates, and thus, reduced harmonic emission. Performing a weighted integral of the recombination

probability ratio over the entire phase range can provide an approximation of the total half-cycle

HHG mode. The appropriate weighting function f(φ0) to incorporate the phase-dependent effects

follows the harmonic yield scaling described in [53] Eqs. (5)-(7):

f(φ0) = ωADK(φ0)× τ−3
f (φ0)/E2

L(φ0), (4.15)

Figure 4.7 shows the phase-integrated RPR for all harmonic energies in both the Gaussian focus

(a) and waveguide (b) geometries. Figures 4.7(c) and 4.7(d) are identical to 4.7(a) and 4.7(b),

but only HHG energies above 1Up contribute. Primarily due to differences in mode shape, there

is a larger area with nonzero RPR in Fig. 4.7(d) than in Fig. 4.7(c), indicating a mode-averaged

flux advantage for the waveguide case over the Gaussian focus case. It is important to note that

different ionization phases will have different spatial profiles for the individual drifts, and thus,

the final RPR profile. As a result, different spectral regions will be emitted with different spatial

modes, giving rise to complicated spectral-spatial dynamics when propagation and phase-matching

are considered.

4.6 Lorentz Force Compensation through Noncollinear Geometries

The analysis in the previous sections relies on the interplay between the two components of

the Lorentz drift in finite laser modes, δEz and δv×B. However, the magnitude of δEz can only be

comparable to δv×B when the mode size w approaches λL. If drift cancellation is desired in a large

mode scenario (w >> λL), then it is impractical to rely on the inherent Ez field of the single-beam

mode. Additional fields would then be necessary.

Recent work in HHG has been performed using two-beam noncollinear geometries with linear

or bi-circular polarizations, which in itself has interesting phase-matching and selection rules [51,

145, 96, 94, 40, 14, 130, 129]. Here we propose a similar method that can generate a forwards

field ellipticity that can act in the same direction as the magnetic Lorentz force, thereby enabling
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Figure 4.7: Spatially-resolved, phase-integrated recombination probability ratio (RPR) for all
harmonics vs plateau and cutoff harmonics. Plots (a) and (c) correspond to a Gaussian focus
geometry, while plots (b) and (d) correspond to a waveguide geometry. All harmonic energies
contribute in (a) and (b), while only energies above 1Up contribute in (c) and (d). For all cases,
the driving laser has wavelength λL = 10 µm, spot radius w = 50 µm (I.D. = 2a = 150 µm), and
peak intensity IL = 2.77× 1014 W/cm2.
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drift cancellation. The experimental geometry uses two noncollinear, counter-rotating, circularly

polarized beams of equal intensity and wavelength, as shown in Fig. 4.8(a). In a collinear geometry,

adding counter-rotating circular polarizations with the same amplitude and frequency yields a linear

polarization, where the polarization angle depends on the relative phase between the two added

beams; in a noncollinear geometry, however, there is a projection of the fields along the forward

direction defined by the bisecting centerline between the two crossing beams (defined as the z-

direction here). Certain locations within the overlapping region will result in the constructive

addition of these z-field projections, which when combined with the transverse field results in a

forwards ellipticity. In other words, the major axis of the elliptical polarization will lie within the

x-y plane, while the minor axis is along the z-direction.

Figure 4.8: Two noncollinear, circularly polarized beams (a) produce a polarization gradient across
their focus in the transverse direction (b), including points with forwards ellipticity. This makes
the usual linear trajectories (c) take paths that miss the ion (d), which when added to the effect
of the magnetic Lorentz force (e) achieve one recollision per cycle (f), re-enabling the harmonic
emission. Adapted from [102].

Because the z-directed force from the forward ellipticity oscillates in sign, the electron will

experience an alternating forward and backward drift each half-cycle (Fig. 4.8(d)). Even in the

noncollinear beam case, the magnetic v×B drift will be along the forward z–direction (Fig. 4.8(e)).

Again, the electron will experience additive and canceling drift components in neighboring half-

cycles (Fig. 4.8(f)). As a result of the half-cycle symmetry breaking of the electron’s trajectories,
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the resulting harmonic emission from neighboring half-cycles can be viewed as an unbalanced

interferometer, giving a high sensitivity measure of how the magnetic Lorentz force influences the

ionized electron during the HHG process.

A quantum mechanical analysis of the harmonic emission can be performed for the non-

collinear, bi-circular geometry following similar steps as presented in Section 1.3.1. In this geome-

try, the laser vector potential is modified from the plane-wave form of Eq. (1.38), with the following

form (at z = 0 and small crossing angle):

A(r, t) ≈ −EL0

ωL


cos(kx sin(θ))

sin(kx sin(θ))

0

 cos(ωLt) (4.16)

Although the small angle approximation results in near-zero amplitude for Az, larger crossing of

the two beams results in a periodic modulation along the z-axis. A maximal forwards-ellipticity is

achieved when kx sin(θ) = π/2, in which case:

A(r, t) = −EL0

ωL


0

cos(ωLt)

sin(θ) sin(ωLt)

 (4.17)

Because there is an experimental mechanism to adjust the forward ellipticity (crossing half-angle

θ), it can be varied to control the amount of drift cancellation with δv×B as well as measure

it. Because of the half-cycle asymmetry of the total drift, the returning electron’s wavefunction

overlap with the bound electron can be reduced for large drift (Eq. (4.12)), but small drifts can still

produce electron phase asymmetries, leading to the possibility to generate even harmonics. The

strength of the even harmonics should depend on the forward ellipticity, which varies spatially. As

a result, the far-field emission pattern of the even harmonics is predicted to be influenced by this

spatially-varying pattern. Recent experiments have used beam half-angles θ on the order of a few

degrees [130], resulting in ellipticities ε = sin(θ) ≈ 9% (a sufficient amount to counteract significant

magnetic drifts).
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With the vector potential from Eq. (4.16), the quantum action S(p, t, t′) can be calculated,

leading to a nonzero harmonic dipole for even and odd harmonic frequencies. For a single atom

located in a maximal ellipticity region, the dipole emission strength was calculated and plotted

for various driving parameters in Figures 4.9 and 4.10. For IL = 1017 W/cm2 (nearly relativistic

intensity) 2 and a relatively short wavelength of 800 nm (Fig. 4.10), the magnetic Lorentz drift is

shown to significantly reduce the harmonic emission from the ideal dipole scenario [21]. Partially

compensating for the magnetic component by introducing a slight crossing (θ = 2◦), the harmonic

emission largely recovers and could be improved further.

Figure 4.9: Nondipole calculations of odd (black) and even (blue) harmonics produced in helium
for driving wavelengths 800 nm and 1.6 µm, intensities of 3.2 × 1014 and 1015 W/cm2, and a
crossing half-angle of θ = 4◦. The arbitrary vertical scale is logarithmic, and z-polarized harmonics
are removed from the result. Even and odd harmonics are emitted with intensity ratios of ∼ 10−3

for 800 nm drivers and ∼ 10% for strong mid-IR fields at 1.6 µm and 1015 W/cm2. Adapted from
[102].

The importance of these findings is that the half-cycle symmetry breaking in the full quan-

tum calculation predicts the presence of even harmonics at much lower intensities and shorter

wavelengths than the semi-classical, amplitude-only approach would suggest. Even harmonics re-

sulting from nondipole effects should be detectable (within 2–3 orders of magnitude of the odd

harmonics) even for 800 nm drivers, and certainly for 1.6 µm drivers at 1015 W/cm2. This new

result from the full quantum calculation indicates that the harmonic spectrum has a sensitive de-

pendence on the quantum phase asymmetry of the returning electron. It is predicted that using

2 Note that this toy problem only considers microscopic emission, and macroscopic effects could prohibit phase-
matched HHG in such high intensity regimes, where the ionization levels would be large. Possible exceptions are
described in Section 5.3.
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Figure 4.10: Calculations of the above-threshold harmonic emission from the Ne6+ ion for an 800
nm, IL = 1017 W/cm2 driver. The first pair of quantum orbits and the uniform approximation
were used for the calculation, and z-polarized harmonics were discarded. For zero crossing angle
(linear polarization), nondipole effects (v × B) reduce the emission by two orders of magnitude
compared to the emission using the dipole-approximation. With θ = 2◦, the resulting forward
ellipticity causes the harmonic emission to partially recover. Adapted from [102].
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current OPA technology to achieve moderate mid-IR wavelengths, nondipole effects during non-

collinear, bi–circular HHG should be measurable through the spectrum. Importantly, the reduction

of total HHG flux as a result of Lorentz drift effects is not expected to be significant until driving

wavelengths ∼ 6 µm are approached (using optimal intensities) as discussed in Section 4.5.

In addition to being nonzero, the even harmonics can be easily distinguished from the typical

odd harmonics through their natural angular separation in the noncollinear geometry. As demon-

strated in [130] for odd harmonics, momentum and energy conservation dictates that for an odd

photon to be emitted, an odd number of driving photons must be added together. Further, con-

servation of spin angular momentum for bi-circular drivers dictates that n photons are taken from

one beam and n + 1 taken from the other, giving the harmonic a net transverse momentum of

±~kx = ±~k sin(θ) [103, 122]. For even harmonics, an even number of photons are added through

parametric conversion via the tensor operator r̂ ⊗ p̂ : ∇A. Ultimately, the even harmonic can

absorb -2, 0, or 2 units of ~kx transverse momentum, giving linear or circular polarizations. As a

result, the odd and even harmonics will be emitted at different angles and should be distinguishable

at a detector without the need for a grating spectrometer.

4.7 Experimental Signatures of the Lorentz Drift

There are a number of experimental indicators that can confirm the Lorentz drift effects

predicted in this chapter. One of the most important challenges when using mid-IR drivers is the

reduction in total HHG flux. It may be experimentally possible to distinguish the super-Gaussian

scaling due to the Lorentz drift in Eq. (4.14) from the polynomial scaling due to quantum diffusion,

but would likely prove difficult. The quantum diffusion scaling is dominant and would obscure the

Lorentz drift contribution.

The Lorentz displacement is also expected to affect the HHG spatial mode. It has been

demostrated that as the laser wavelength is increased, the HHG emission from only one half-cycle

of the driver is fully phase-matched, generating a single X-ray burst even for a multi-cycle driver

(Chapter 2, [18]). Therefore, for sufficiently long driving wavelengths and ideal phase-matching
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conditions, an isolated HHG pulse should be produced with an asymmetric mode profile along the

polarization direction, as indicated by Fig. 4.7. Further, varying the intensity or carrier-envelope-

phase (CEP) of the driving pulse can cause the particular half-cycle that is phase-matched to

change, thus causing the asymmetric HHG mode to flip about the x-axis. Imaging this mode

onto an X-ray CCD camera and adjusting the intensity or CEP could reveal a signature of the

spatially-dependent Lorentz drift. In contrast, for the lower photon energy range where multiple

half-cycles contribute to the HHG signal, a more symmetric mode is expected that could obscure

the Lorentz drift signature, but a full spatio-temporal attosecond pulse characterization technique

could be employed to reveal the spatio-temporal asymmetry [58].

When multiple half-cycles of the driver contribute constructively to HHG, individual harmon-

ics are spectrally resolved. Using single-color drivers, only odd order harmonics are observed due

to the emission of HHG bursts every half-cycle. This typical twice-per-cycle emission in the time

domain causes the energy spacing of harmonics in the spectral domain to be twice the fundamental

photon energy. Even harmonics are, therefore, not allowed. However, the Lorentz displacement

can break the half-cycle symmetry in some spatial regions and thus give rise to even harmonics.

Section 4.6 provides a method for observing even harmonics when using a noncollinear bicircular

geometry. For single beam drivers with finite spatial modes, even harmonics can also be observed.

Looking off-axis in Fig. 4.7, the recombination probability ratio is close to unity in the lower half

of the mode (i.e. δEz cancels δv×B). In the next half-cycle, this spatial location will not experience

the same drift cancellation due to the sign flip of δEz but not δv×B. At this spatial position, there

will be bright emission, followed by weak emission during the next half-cycle, and so on. A portion

of this signal will have the usual λL/2 periodicity, which produces odd harmonics. Additionally,

there will be a portion that has λL periodicity that will give rise to every harmonic, including the

even orders. By analyzing the asymmetry of Fig. 4.7, it is possible to predict the mode profile of

the even and odd harmonics. By using an imaging spectrometer that can separate the individual

harmonics of a 10 µm driver near 1Up, one would expect to observe a signal similar to that shown in

Fig. 4.11. Here, the peak intensity of the even harmonics is close to 30% that of the odd harmonics,
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but this ratio approaches unity as the driving wavelength and harmonic energy are increased (i.e.

20 µm and 2Up). Again, note that this result includes only the modulations in amplitude, and that

half-cycle asymmetries in the electron’s quantum phase can shift the absolute spectral positions

of the harmonics [102]. Experimentally, resolving the individual harmonics with such long driving

wavelengths and large harmonic energies would prove to be difficult, but might be possible with

the use of a Fourier transform spectrometer, similar to the one used in Chapter 2, [18].

0 

1  

½  

Figure 4.11: Predicted HHG spectrum near 1Up using a driving laser with λL = 10 µm, w = 50
µm, and IL = 2.77× 1014 W/cm2. The moderate spatial and temporal asymmetry of the Lorentz
drift gives rise to even harmonics with a two-lobed structure along the polarization direction (y).

4.8 Lorentz Drift Summary

The theory presented in this chapter has provided a deeper investigation of the full Lorentz

force and its effect during strong field ionization and recollision-based processes such as HHG.

From the analysis, it is clear that the Lorentz drift should not significantly affect the probability of

recollision for driving laser wavelengths less than 6 µm and moderate intensities IL < 1015 W/cm2.

For longer wavelengths, the magnetic Lorentz force can result in non-negligible electron drifts, but

this drift can be canceled by the influence of the longitudinal electric field Ez that arises in a

tight focus or in crossed beam geometries. The interplay between the two components produces a

spatially-varying drift that is zero in some locations of the mode. Thus, the Lorentz drift should

not completely shut off the HHG process, even for hard X-ray HHG driven by 10 µm wavelengths

or longer.



Chapter 5

Pushing HHG to Higher Photon Energies

In Chapter 2, the temporal and spectral properties of HHG emission were investigated when

long wavelength, mid-infrared drivers are used. To date, the hard X-ray regime has been inacces-

sible via HHG. Although there is an obvious route to this spectral region through the λ
(1.6−1.7)
L

macroscopic scaling law, ultrafast driving lasers with wavelength greater than 10 µm would be

necessary. The unavailability of such high-power, ultrafast lasers has limited efforts in this regard.

It is possible to generate far-infrared light with ultrafast pulse durations using OPA or OPCPA

technologies. Additionally, self-phase-modulation of 10 µm CO2 laser light and pulse compression

could result in sufficient bandwidth to support several-cycle pulses at the necessary wavelengths.

Furthermore, the full Lorentz force and the associated longitudinal drifts are not expected to com-

pletely shut off the HHG process, as determined in Section 4.5. More detrimental to the process

would be the unfavorable flux scaling of λ
−(5−9)
L [161, 120, 42, 98]. This scaling has been overcome

in the past by taking advantage of the increased phase-matching pressure for long wavelengths,

which results in a larger emitter-density [160]. However, phase-matching pressures quickly reach

solid densities when such long wavelengths are considered, introducing further limitations such as

the solid medium’s damage threshold.

Achieving hard X-ray harmonics can be approached through alternative techniques that do

not rely on increasing the driving laser wavelength. The cutoff photon energy scaling of λ
(1.6−1.7)
L

is a macroscopic scaling using a conventional single-beam geometry. The single-atom cutoff scales

as ILλ
2
L, which indicates that there exists an alternative route to increasing the harmonic cutoff:
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through the peak intensity. Of course, the phase-matching requirement cannot simply be neglected,

but quasi-phase-matching (Section 1.4.4) is an option that can be considered. Additionally, multi-

beam geometries could bypass the typical λ
(1.6−1.7)
L scaling. A noncollinear geometry that makes

use of high-order difference frequency generation (HDFG) is one possible approach that will be

discussed in Section 5.3. Alternative modes or polarization states could also alter the typical

phase-matching laws, and should be investigated for possible utility in hard X-ray HHG.

5.1 HHG using Cylindrical Vector Beams

Driving HHG with linear polarization has been a successful approach to frequency conversion.

The three step model of HHG (Section 1.2) makes use of the 1-D trajectory of the electron to ensure

a high probability of recollision and harmonic emission. Motion in non-polarization directions can

be detrimental to the HHG process, such as in the presence of significant magnetic Lorentz forces

(Chapter 4) or driving fields with elliptical polarizations [154, 130, 129]. Bichromatic, bi-circular

drivers can result in high recollision probabilities, but each harmonic pulse in the HHG pulse train

has been shown to be locally linear, with an average HHG polarization ellipticity when measured

over the entire pulse train [128].

Aside from linear and circular, there are other polarization states that can be explored.

Cylindrical vector beams (CVBs) contain unique polarization states that can continuously vary

from radial to azimuthal polarizations (Appendix A). Additionally, multiple modes of CVBs can be

combined to produce complex, spatially-varying polarization states. The microscopic and macro-

scopic high harmonic process can possibly be altered under these driving fields. Figure 5.1 shows

the spatial intensity distributions and polarization directions for the simplest radial and azimuthal

polarization modes (LG01):

LG01 =
2√

π w(z)2
r e−r

2/w(z)2 (5.1)

For radially- and azimuthally-polarized CVBs with the ”doughnut” modes shown in Fig. 5.1,

the microscopic three step model should hold true. Although the polarization varies spatially, it
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Figure 5.1: Intensity distributions and polarization directions for the radially- and azimuthally-
polarized Laguerre-Gauss LG01 modes (Appendix A).
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is locally linear on the length scale of the electron trajectories (on the order of nanometers for

near-infrared wavelengths). Thus, harmonic emission will also be locally linear. Overall, the HHG

mode will take on a similar shape and polarization as the driving field, though the nonlinear nature

of the harmonic process will increase the amplitude contrast of the HHG mode.

CVBs, like Gaussian beams, exhibit interesting field properties when tightly focused. As

explained in Section 4.2, a longitudinal electric field component Ez arises when the mode size w

approaches the wavelength λ. In the linearly-polarized Gaussian case, the Ez component takes on a

two-lobed spatial structure due to its proportionality with
∂Eψ
∂ψ , where ψ represents the polarization

direction. For the radially-polarized LG01 mode, this derivative is largest in the center of the

mode. Since the primary polarization component Er is zero in the center, Ez can be the strongest

component in a small region around the center of a tightly focused beam. Figure 5.2 depicts the

field strengths of the radial and longitudinal components throughout a tight focus.

Figure 5.2: Radial and longitudinal field strengths of a radially-polarized LG01 mode throughout
a tight focus. The longitudinal electric field Ez dominates over the radial component Er at the
center of the mode in the focus.

A possible consequence of this strong longitudinal field is that Lorentz drift compensation
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could be performed when driving with long wavelength CVBs. Another possibility is that har-

monics could be generated from centrally-localized electrons that take on primarily longitudinal

trajectories. Ultimately, the single-atom harmonic emission will take on the Larmor radiation pat-

tern from Fig. 1.15. Looking in the far field but close to the z-axis, this emission pattern takes on

a similar ”doughnut” mode profile with radial polarization. Furthermore, macroscopic effects can

cause the near-axis emission to be enhanced, provided that phase-matching is achieved. Otherwise,

phase-matched HHG may be optimized at larger angles off-axis. Ultimately, radially-polarized

HHG could be possible by directly driving electrons along the radial directions in a loose focus, or

alternatively by driving them in the z-direction in a tight focus.

Because there is roughly zero intensity at the center of a loosely focused CVB mode, it is

possible for there to be a phase singularity at that location. This is true for CVBs that contain

orbital angular momentum (OAM), which manifests as a continual phase shift along the azimuthal

direction: eilφ. That is, following a path along φ̂ from φ = 0 to φ = 2π, the phase of the driving beam

can shift a total of 2πl, with positive or negative integer l corresponding to the OAM topological

charge. Figure 5.3 illustrates the wavefront for such beams. 1 Locally, the field components are

unchanged and develop in time according to the laser frequency. Thus, HHG is possible on the

microscopic scale. Macroscopically, the harmonic emission would inherit the spiraling phase of the

driver. However, due to the nonlinear nature of the process, the integer l would be multiplied by

the harmonic order q, resulting in a much more rapidly varying phase and much higher OAM for

the harmonic beam [50]. In [59] and [44], multiple OAM driving beams are combined to allow

tunability of the OAM contained within the HHG output.

In all of the HHG experiments performed to date using CVB drivers, focusing geometries in

gas jets/cells were used. However, gas-filled hollow waveguides are valid candidates for CVB HHG

since there exist radially- and azimuthally-polarized guided modes: the TE0q and TM0q modes,

respectively (Appendix A). Future work could investigate HHG driven by these guided modes in

hollow waveguides, which would result in an HHG flux benefit from the larger pressure-length

1 Recently, fractional orbital angular momentum beams have been theoretically investigated [165].
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Figure 5.3: Wavefront and intensity shading for a l = 2 OAM beam.
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products achievable in a guided geometry. Finally, HHG driven by long wavelength CVBs could

show advantages in terms of cancellation of the magnetic Lorentz force by the strong Ez field

component that is present on-axis in tightly focused CVBs. Therefore, CVB-driven HHG could be

a route to reaching the hard X-ray regime.

5.2 HHG in Bragg Waveguides

To date, the highest photon energy measured from an HHG source is in the soft X-ray regime

at 1.6 keV, resulting from the use of a long wavelength 3.9 µm driver [161]. The HHG geometry

used for this demonstration was a high pressure gas-filled waveguide with an inner diameter of 200

µm and length of 5 cm. The waveguide was supplied with a gas pressure up to 80 atm. Due to

harmonic reabsorption concerns (Section 1.4.5), vacuum must immediately follow the high pressure

section. Necessarily, there exists a large pressure differential over a relatively short distance after

the HHG medium. From basic principles in fluid dynamics, the PV throughput (Q) through a pipe

of length L and radius R in the laminar regime is given by:

Qpipe =
d(PV )

dt
= Cpipe(P2 − P1) =

[
πR4

8ηL

(
P1 + P2

2

)]
(P2 − P1) (5.2)

Here, η is the dynamic viscosity of the fluid. It is clear from Eq. (5.2) that the gas flow rate scales

strongly with the pressures P1 and P2. If the lower pressure is at vacuum P1 ≈ 0, then the flow

rate Q ∝ P 2
2 . Thus, handling the high gas flows resulting from phase-matching pressures up to 80

atm requires a considerable effort in pumping speed and geometry.

Long wavelength HHG drivers that require higher pressures (Fig. 1.27) represent a significant

experimental challenge. The gas flow problem can be partially alleviated by using smaller radius

waveguides since the conductance scales as R4. This solution has the additional advantage of

requiring less pulse energy for the driving laser to reach equivalent peak intensities, since the

intensity of the driver scales as R2 (assuming all else held constant). This is especially advantageous

in relaxing the front-end laser requirements for long wavelength drivers, since these sources generally

require complicated frequency conversion schemes. However, long wavelengths guided in small
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diameter capillaries can suffer from significant propagation loss. As described in Appendix A, the

complex propagation constant γpq has an imaginary component that depends on the ratio λ/a,

and this imaginary component is responsible for propagation loss. Even in the case described in

[161], 3.9 µm light guided through a 200 µm diameter waveguide for 5 cm will only transmit a

maximum of 72% of the light coupled in. Decreasing the waveguide diameter further would result

in significantly more propagation loss that would influence the ability to ionize and phase-match

the HHG process over centimeter length scales.

Eliminating the detrimental effects of high propagation loss is desirable for efficient, phase-

matched HHG driven by long wavelengths, while maintaining a manageable gas flow rate. One

approach to reduce the propagation loss is to use Bragg waveguides. These waveguides are similar to

simple hollow capillaries, except that the inside wall of the waveguide contains a multilayer coating

(Fig. 5.4). This multilayer is effectively designed to provide high reflectance of the guided light,

similar to Bragg mirrors. Bragg mirrors utilize quarter-wave optical thicknesses for alternatingly

high and low index materials, resulting in constructive interference for the reflected beam. The layer

thicknesses can be designed to reflect a band of wavelengths, and they must be adjusted to account

for the angle of incidence. For a guided EH11 mode, the angle of incidence is not immediately

apparent since the mode has a flat wavefront and propagates along the length of the waveguide.

However, a transverse wavenumber k⊥,σ can be determined by taking the standard deviation of

the mode’s spatial frequency content. The effective incidence angle can then be calculated: θσ =

cos−1(k⊥,σ/k). The transverse wavenumber k⊥,σ is inversely proportional to the waveguide radius

a, so the effective incidence angle θσ is less glancing as the ratio a/λ decreases. Bragg layers for

the inside wall of the waveguide can therefore be designed with θσ in mind.

Of course, this simplistic effective-angle approach is a first order approximation. A full

electromagnetic solution for the mode and its propagation constant can be numerically calculated,

as demonstrated by Badding et al. in [17] through the use of COMSOL Multiphysics® software.

In their work, alternating layers of silicon and silica are deposited through high-pressure chemical

vapor deposition (Fig. 5.4). Silicon and silica are ideal materials for the Bragg layers due to their
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Figure 5.4: Scanning electron microscope image of a Bragg fiber. Alternating Si and Silica layers
are visible on the inside wall of the capillary.
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high index contrast and high damage thresholds. These Bragg waveguides are ideal for handling

the high peak powers and intensities that are present during HHG conditions, and their ability to

provide a spectral band of high transmission (even for low values of a/λ) makes them useful for HHG

driven by mid-IR light in small diameter capillaries. Experiments are currently being performed to

generate and characterize mid-IR driven HHG in small diameter Bragg waveguides. Success in this

current effort could provide a bright, stable light source in the water window regime (284–541 eV),

lending itself to high resolution microscopies and spectroscopies of biologically-relevant samples.

5.3 Noncollinear High-Order Difference Frequency Generation

In Section 1.4.1, the equations governing phase-matching were presented. Before the standard

single-beam scenario was investigated in detail, the general vectorial phase-mismatch was written

in Eq. (1.62) as:

∆k ≡ kQ(ωQ)−
∑
j

mj kj(ωj) = 0

ωQ =
∑
j

mj ωj

(5.3)

Here, we see conditions that ensure momentum and energy conservation for the HHG process,

regardless of how many beams are involved or what their frequencies and propagation vectors

are. However, the integers mj are not constrained to be positive, indicating that for multi-beam

geometries, a high-order difference frequency generation (HDFG) process is possible. In this section,

consider two plane-wave driving fields propagating in different directions (k̂1 and k̂2) in the x-z

plane, each with its own frequency (ω1 and ω2) as depicted in Fig. 5.5. Assume these fields are

interacting in a partially ionized gas medium. In this situation, Eq. (5.3) can be written as:

∆k = k(ωQ)−m1 k1(ω1)−m2 k2(ω2)

ωQ = m1 ω1 +m2 ω2

(5.4)

To satisfy the phase-matching condition in this vectorial situation, both the harmonic angle

θQ and magnitude kQ(ωQ) ≡ |kQ(ωQ)|must match the angle and magnitude of the sum [m1 k1(ω1)+
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Figure 5.5: Geometry for a two-beam noncollinear frequency upconversion process (HHG or
HDFG). Note that for HDFG (m1 > 0 and m2 < 0), the harmonic emission angle lies outside the
sector spanned by the two driving vectors: θQ > θ1/2.
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m2 k2(ω2)]. These can be considered separately:

θQ = tan−1

(
m1k1(ω1)−m2k2(ω2)

m1k1(ω1) +m2k2(ω2)
tan(θ1/2)

)
(5.5)

kQ(ωQ) = m1k1(ω1) cos(θ1/2 − θQ) +m2k2(ω2) cos(θ1/2 + θQ) (5.6)

The magnitudes for each of the wavevectors can be calculated by summing the vacuum, atom, ion,

plasma, and geometrical contributions described in Section 1.4.1. Solving Eq. (5.5) and Eq. (5.6)

simultaneously can be performed numerically, allowing straightforward exploration of the large

parameter space of the problem {ω1, ω2, m1, m2, θ1/2, P̄ , η}.

HHG in two-beam noncollinear geometries have been experimentally investigated for multi-

ple colors [14] and even bi-circular polarization states [130]. Further, HDFG has been observed

experimentally [51, 145]. One benefit to HDFG is that phase-matching can occur at ionization

levels that exceed the conventional critical level for single-beam HHG. This is possible by taking

advantage of the negative value for m2 and the large harmonic emission angle, both of which re-

duce kQ(ωQ) to a greater degree than k1(ω1) or k2(ω2). This was predicted and experimentally

verified by L’Huillier et al. in [51], where a strong fundamental beam at 800 nm was crossed

with a weak (5%) second harmonic beam (400 nm) in an Argon gas cell. The crossing angle was

small (θ1/2 ≈ 1 mrad), the pulse duration was ∼ 40 fs, and the peak intensity was approximately

2 × 1014 W/cm2. They observed HDFG photon energies up to ∼ 40 eV, and a maximum of 2

second harmonic photons subtracted (m1 = 22–24, m2 = −2). Although HDFG was demonstrated

in this work, the maximum harmonic energy observed (∼ 40 eV) did not exceed the single-beam

phase-matching cutoff (∼ 50 eV for 800 nm in Ar). This could be due to the low peak intensity

used, which would give a single-atom cutoff of ∼ 54 eV. It is possible the low crossing angle used

did not allow phase-matched HDFG up to the single-atom cutoff. However, the ionization level

under these phase-matched conditions was approximately 2–3 times the critical ionization level for

Ar (ηc ≈ 4.5%), indicating that HDFG can bypass the conventional phase-matching limitations for

single-beam, collinear geometries.
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HDFG was again performed in [145], where slightly larger crossing angles θ1/2 ∼ 25 mrad

were used. For the HDFG case presented, a strong 385 nm beam and weaker (10%) 790 nm beam

were focused into an Ar gas jet. The pulse duration was 45 fs, and the combined intensity was

3 × 1014 W/cm2. They report a theoretical maximum HDFG order of 29 (for the 790 nm beam),

representing a photon energy of 43 eV, though the maximum measured energy for the strong 385

nm experimental case is not clear from the text. In any case, the conventional phase-matching

cutoff in Ar at 400 nm is ∼ 29 eV, or ∼ 50 eV for 790 nm. Despite phase-matching HDFG in the

presence of high ionization levels (4 × ηc ≈ 56%), the maximum photon energy observed did not

exceed the single-beam phase-matching cutoff for one of the wavelengths used (790 nm: EPMC ∼ 50

eV), when HDFG should allow phase-matching significantly beyond either of the traditional cutoffs.

It is surprising that even though higher ionization levels can be present during phase-matched

HDFG, no experiment has demonstrated photon energies that exceed the typical single-beam phase-

matching cutoff EPMC for the contributing wavelengths. This can most likely be attributed to the

small crossing angles, low pulse energies, and choice of gas used in the two experiments described

above. Increasing the crossing angle θ1/2 allows for more extreme ionization levels to be present

while phase-matching HDFG, which would allow higher peak intensities (and therefore higher

single-atom cutoffs) to be used. Due to the linear scaling of the single-atom cutoff with intensity,

much larger pulse energies might have been necessary to noticeably exceed the conventional phase-

matching cutoff. It is not specified in the past work whether significantly increased driving pulse

energies were attempted. It is possible that the choice of low-Ip Ar gas for the harmonic medium

would cause highly dynamic multiple-ionization that would limit the temporal window over which

phase-matched HDFG could occur.

To thoroughly investigate whether HDFG could significantly bypass the restrictive single-

beam phase-matching cutoff, a new experiment could be performed with the following conditions:

(1) Large crossing angles θ1/2 that allow phase-matching of HDFG processes even at 100%

ionization levels.
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(2) Large enough peak intensities for a single-atom cutoff that is significantly greater than the

conventional EPMC .

(3) A harmonic medium with high first- and very high second-ionization potentials (He) such

that there is a significant portion of time where the ionization level is stabilized close to

100% despite the very high peak intensities present.

The third point can be important for ensuring multiple half-cycles of the driving lasers contribute

to the emission, which increases the emitted flux and can eliminate the need for carrier-envelope-

phase (CEP)-stable driving lasers. Electrons that contribute to the HDFG signal in this ∼ 100%

ionization case would be given from the He+ ion, resulting in doubly-ionized He while the electron

is in its propagation step (HHG from ions is considered in [134]).

As an example, numerical calculations were performed to determine the phase-matching

conditions when two crossed driving beams generate extreme ionization levels up to ∼ 100% in

He. It is assumed that there is a strong primary driver at 800 nm and a weak secondary beam

(to simulate the situation where m2 < 0 and |m1| >> |m2|, which results in θQ ≈ θ1/2). The

geometric phase-mismatch terms were ignored, which is reasonable for loose focusing geometries in

a gas jet/cell. Table 5.1 shows the calculated phase-matching conditions and the resulting harmonic

outputs. Note that for the temporally stable case of ∼ 100% ionized He, there is a range of pulse

durations dt that can give the desired ionization level at the peak of the pulse. This is not true for

the cases where η < 100%, since the ionization level (and ∆k) changes rapidly past ∆k = 0.

The driving wavelengths used in Table 5.1 were chosen since ultrafast laser technology at

these wavelengths has reached impressively high peak power levels, enabling the most extreme

HDFG configurations listed. Long wavelength drivers in the mid-IR regime could be considered,

provided that a stable, high power, ultrafast OPA or OPCPA is available [47, 139]. With such a

driving source, the single-atom cutoff can increase dramatically, possibly bringing the hard X-ray

regime within reach through phase-matched, mid-IR driven, noncollinear HDFG.
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Table 5.1: Calculations for several example driving conditions during noncollinear HDFG where
phase-matching is achieved. The gas medium is He. The left side of the table specifies the conditions
that satisfy phase-matching. The middle section gives the characteristics of the phase-matched
HDFG output. The right side states the minimum laser peak intensity to achieve the the HDFG
photon energy ESAC = EQ, and the corresponding pulse duration that results in ionization level η
at the center of the pulse.

λ1 (nm) λ2 (nm) m1 m2 θ1/2 P̄ η θQ EQ (eV) IL (W/cm2) dt

800 800 250 -1 14◦ 0.15 40% 14.1◦ 386 1.9× 1015 20
800 800 600 -10 19◦ 0.5 100% 19.6◦ 915 4.7× 1015 30–100
800 400 400 -5 10◦ 0.23 90% 10.5◦ 605 3.1× 1015 20
800 400 1000 -8 20◦ 0.5 100% 20.6◦ 1,526 7.9× 1015 20–40

5.4 Future Work in Mid-IR Driven HHG

Continuing to push the HHG photon energy and flux to higher levels has a number of ben-

efits for materials and light science applications. For instance, coherent diffractive imaging (CDI)

is a powerful form of optical microscopy. Using HHG or other X-ray light sources, CDI can ob-

tain the complex transmission/reflection profile of samples at the nanometer scale. In CDI, the

achievable spatial resolution achievable is limited by the experimental geometry (NA), the probe

wavelength (λ), and its spectral bandwidth (∆λ). To achieve better spatial resolution, a smaller

probe wavelength can be used. Extending the HHG probe energy from the EUV (13 nm) into the

water window (2.3–4.4 nm) would be a natural next step, particularly because light in the water

window region transmits highly through water, making it a strong candidate for performing CDI on

biological samples suspended in water/ice. Furthermore, there is a strong need for high resolution

lithography and microscopy for quality control in the semiconductor industry, which is continually

taking steps to reduce feature sizes.

One difficulty with using a standard HHG light source for water window CDI is that the con-

ventional approach to reaching the water window requires mid-IR drivers, which results in naturally

broad spectral bandwidths as discussed in Chapter 2. With such a large value for ∆λ/λ, there will

be a detriment to the spatial resolution achievable through CDI. It is possible to narrow the spec-

tral bandwidth through the use of narrow bandpass dielectric mirrors and an appropriate selection
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of foil filters. An X-ray monochromator can also be designed using glancing incidence gratings

and mirrors. Unfortunately, these approaches reduce the HHG flux that would be incident on the

sample, thus requiring long integration times and high levels of stability. This effect, combined

with the unfavorable HHG flux scaling law λ
−(5−9)
L , makes mid-IR driven HHG CDI a challenge,

though not impossible. Efforts are currently being made to use the aforementioned methods to

achieve new levels of spatial resolution through water window CDI. In particular, the use of long

Bragg waveguides designed for mid-IR wavelengths (Section 5.2) can allow a greater level of HHG

flux to build up due to the increased pressure-length product.

Furthermore, alternative approaches can be devised to avoid some of the limitations from

the conventional HHG bandwidth and flux. For instance, the traditional HHG cutoff energy scales

as λ(1.6−1.7) according to the phase-matching constraints. This scaling has held true for infrared

wavelengths, but has been overcome using ultraviolet drivers to perform HHG in multiply-ionized

plasmas. In [134], HHG from ions was demonstrated, resulting in a previously unexpected harmonic

cutoff > 280 eV using 270 nm drivers (Fig. 5.6). Furthermore, the HHG flux for these high energy

regions were equal to or greater than the flux from longer wavelength drivers, which is predictable

from the reduced amount of quantum diffusion. Additionally, the HHG emission was observed

in discrete harmonics, as opposed to a supercontinuum, making this UV-driven light source a

strong candidate to perform water window CDI. As discussed in Section 5.3, noncollinear high-

order difference frequency generation could also be performed to produce high-flux, monochromatic

harmonics at photon energies beyond the typical phase-matching cutoff.

HHG at high photon energies, regardless of the driving configuration, is useful for a plethora

of applications, ranging from high resolution CDI microscopy to broadband XAFS spectroscopy.

The attosecond time-scales of the HHG pulses makes this light source unique and well-suited for

dynamic measurements, such as dynamic XAFS. By pumping a thin lattice with visible light, and

subsequently interrogating with a broadband HHG probe, the perturbation to the lattice from the

pump can be determined. Acoustics, thermal transport, and the density of states for phonons

[91, 133, 52] can all be probed on ultrafast time scales in this experiment. Efforts are currently
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Figure 5.6: Bright HHG from atoms and ions for UV to mid-IR driving lasers. The experimental
data are plotted as circles. The solid lines plot the theoretical full phase-matching limits, including
only the index of neutral atoms. The dashed lines also include the refractive indices of ions, which
extend UV-driven HHG effective phase matching into the soft x-ray region. Adapted from [134].
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being made toward this goal of dynamic XAFS probed by mid-IR driven HHG.

Finally, driving with much longer wavelengths beyond 10 µm can bring hard X-ray HHG

within reach, but the three step model will be influenced by relativistic Lorentz drift effects (Chap-

ter 4) that should be noticeable in the HHG amplitude for driving wavelengths beyond 6 µm.

Experimental verification of the Lorentz drift can be obtained through the approaches detailed in

Section 4.7. Furthermore, it is possible to directly measure the Lorentz drift through measurement

of the ionized electrons’ momenta. Through a technique called velocity map imaging (VMI), ionized

electrons can be imaged in a transverse momentum space. A strong laser ionizes atoms in a gas

jet, after which the ionized electrons are accelerated by an external electrostatic potential. The

potential is designed to form a momentum-space image of the electrons at a microchannel plate

detector [33]. For short wavelength drivers, the atomic and molecular states can be probed with-

out the influence of relativistic effects from the laser field. However, long wavelength drivers will

generate these effects that could then be observable in the VMI measurement [73]. The magnetic

component of the Lorentz force would tend to shift the electron momentum distribution along the

forward z-direction of the laser. The Ez component would tend to broaden the distribution due to

both the forward and backward contributions. 2 However, if the gas jet size is small compared

to mode (and if the mode is sufficiently small for a significant Ez component) then the jet could

be translated across the mode, thus sampling different regions of the mode (Fig. 5.7). Thus, the

Ez component would vary as a function of the jet’s position, giving a direct measurement of the

Ez field profile along one dimension. This measurement could impart empirical verification of the

theory presented in Section 4.7.

2 Single-cycle drivers may be necessary to probe just the Lorentz force that exists during the three step model,
since the electrons that make it to the VMI detector will inevitably be subjected to the remainder of the field following
ionization. The influence of multiple cycles after ionization could distort the desired signal.
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Figure 5.7: Scanning VMI concept to measure the longitudinal Lorentz force during long wave-
length strong field ionization in a spatially-resolved way. A small diameter gas jet can be translated
across the laser mode to sample the Ez and v ×B contributions separately. A predicted signal at
the VMI is shown for three locations of the scan.



Chapter 6

Concluding Remarks

Light is, indeed, an incredibly powerful tool for making observations of the physical world.

In particular, light in the EUV and X-ray regimes enable unique and higher resolution measure-

ments than is possible using longer wavelengths. High-order harmonic generation provides a route

to produce light in these useful spectral ranges starting with lasers operating at more accessible

wavelengths. Free-electron lasers and synchrotrons are complementary technologies that can ex-

ceed the capabilities of HHG in some aspects, but have certain drawbacks where HHG can fill the

gaps. Investigating the physical mechanisms and limitations of the HHG source can reveal new

routes for improving the technology, thus advancing its ability to be applied in highly sensitive

experiments. Some examples of applications where HHG has shown unique utility are coherent

diffractive imaging, dynamic measurement (Chapter 2), and broadband spectroscopies (Chapter

3).

This dissertation has covered several illuminating studies of HHG in the temporal and spec-

tral domains when the process is driven by long wavelength, mid-infrared light. Interestingly, the

characteristics of the harmonic emission are highly dependent on the driving laser parameters and

geometries. As the driving laser wavelength is increased, the harmonic cutoff and bandwidth nat-

urally broadens, while the emitted pulse train reduces in length until a single isolated burst of

phase-matched harmonics with sub-femtosecond duration is achieved. The resulting supercontin-

uum has particular utility in X-ray absorption fine structure spectroscopies, where the nanoscale

lattice structure can be probed. These spectroscopies have been performed using the broadest HHG
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bandwidth achieved to date, extending to 1.6 keV. Pushing this harmonic cutoff further would

conventionally require the use of longer wavelength drivers approaching the far-infrared regime.

Gaussian focus HHG geometries would typically be necessary for these long wavelengths, but the

use of novel Bragg waveguides could enable high flux, high cutoff HHG in waveguides. However,

long driving wavelengths can also result in relativistic effects during the three step model of HHG,

resulting in longitudinal Lorentz drift effects that could cause the electron to miss its parent ion.

Accounting for all of the forces involved does not indicate HHG would be shut off entirely, however,

and it is possible for HHG to occur even with driving wavelengths beyond 10 µm and harmonic

cutoffs in the hard X-ray regime. The use of cylindrical vector beams or multi-beam geometries can

also be used to compensate for relativistic effects, and also to create new phase-matching conditions

for sum and difference frequency processes. Through high-order difference frequency generation in

a two-beam noncollinear geometry, it could be possible to significantly exceed the conventional

phase-matching cutoff, opening up the possibility to reach the soft X-ray regime or further when

simply using the intense, highly accessible, and highly HHG-efficient colors from Ti:sapphire lasers

(800 nm). Pushing the limits of the HHG spectral characteristics would certainly enable new levels

of capability in CDI microscopies, X-ray spectroscopies, and more.

In the past decade, HHG technology and theory have progressed at tremendous rates, and

there are many more directions in which HHG can grow. The future looks promising for frequency

conversion, especially as driving laser technologies advance to higher intensities, shorter pulse du-

rations, and longer wavelengths. Using next-generation driving lasers in novel geometries, with

the guidance of high-level computations, and through collaboration within the expanding HHG

science community, it is very likely that hard X-ray harmonics (among other new capabilities) will

be achieved within the near future.
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harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B: AMO Phys., 21:L31–L35,
1988.

[37] J. R. Fienup. Reconstruction of an object from the modulus of its Fourier transform. Opt.
Lett., 3(1):27–29, 1978.

[38] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21:2758–2769, 1982.

[39] D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander. Observation of nonsequential
double ionization of helium with optical tunneling. PRL, 69:2642, 1992.
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[98] J. A. Pérez-Hernández, L. Roso, and L. Plaja. Harmonic generation beyond the strong-
field approximation: the physics behind the short-wave-infrared scaling laws. Opt. Exp.,
17(12):9891–9903, 2009.

[99] A. Peters, K. Y. Chung, and S. Chu. Measurement of gravitational acceleration by dropping
atoms. Nature, 400:849–852, 1999.

[100] J. J. Pigeon, S. Ya. Tochitsky, C. Gong, and C. Joshi. Supercontinuum generation from 2 to
20 m in GaAs pumped by picosecond CO2 laser pulses. Opt. Lett., 39(11):3246–3249, 2014.

[101] J. Pigeona, S. Tochitsky, and C. Joshi. Nonlinear optical compression of high-power 10-um
CO2 laser pulses in gases and semiconductors. In AIP Conference Proceedings 1812, National
Harbor, MD, United States, July-Aug. 2017. AIP.

[102] E. Pisanty, D. D. Hickstein, B. R. Galloway, C. G. Durfee, H. C. Kapteyn, M. M. Murnane,
and M. Ivanov. High harmonic interferometry of the Lorentz force in strong mid-infrared
laser fields. submitted.

[103] E. Pisanty, S. Sukiasyan, and M. Ivanov. Spin conservation in high-order-harmonic generation
using bicircular fields. PRA, 90(4):043829, 2014.

[104] M. N. Polyanskiya, M. Babzien, and I. V. Pogorelsky. 100-terawatt CO2 laser: Design and
current status. In AIP Conference Proceedings 1777, San Jose, CA, United States, July
2016. AIP.

[105] T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn. The attosecond
nonlinear optics of bright coherent x-ray generation. Nat. Phot., 4(12):822–832, 2010.

[106] Tenio Popmintchev. Tunable Ultrafast Coherent Light in the Soft and Hard X-ray Regions
of the Spectrum: Phase Matching of Extreme High-Order Harmonic Generation. PhD thesis,
University of Colorado at Boulder, 2009.

[107] B. Ravel and M. Newville. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for x-ray
absorption spectroscopy using IFEFFIT. J. Syncrotron. Rad., 12:537–541, 2005.

[108] J. Ring. The laser in astronomy. New Scientist, Jun 20, 1963.

[109] I. Robinson and R. Harder. Coherent x-ray diffraction imaging of strain at the nanoscale.
Nat. Mater., 8:291–298, 2009.

[110] A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C.
Kapteyn. Phase-matched generation of coherent soft x-rays. Science, 280(5368):1412–1415,
1998.



145

[111] D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus,
C. Simon-Boisson, and J. Biegert. 7 um, ultrafast, sub-millijoule-level mid-infrared optical
parametric chirped pulse amplifier pumped at 2 um. Optica, 3(2):147, 2016.

[112] G. Sansone, L. Poletto, and M. Nisoli. High-energy attosecond light sources. Nat. Phot.,
5(11):655–663, 2011.

[113] P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland.
Spectroscopy using quantum logic. Science, 309:749–752, 2005.

[114] M. D. Schwartz. Quantum Field Theory and the Standard Model. Cambridge University
Press, 2014.

[115] Matthew Seaberg. Nanoscale EUV Microscopy on a Tabletop: A General Transmission and
Reflection Mode Microscope Based on Coherent Diffractive Imaging with High Harmonic
Illumination. PhD thesis, University of Colorado at Boulder, 2007.

[116] B. H. Shaw, J. van Tilborg, T. Sokollik, C. B. Schroeder, and W. P. Leemans. High-harmonic
generation from replenishing solid tapes. In Conference on Lasers and Electro-Optics (CLEO),
San Jose, CA, United States, June 2013. IEEE.

[117] Andrej Singer. Coherence properties of third and fourth generation x-ray sources. Theory
and experiment. PhD thesis, Universität Hamburg, 2012.

[118] Photonics Solutions. Quantronix Palitra Specifications - Photonics Solutions. https://www.
photonicsolutions.co.uk/upfiles/QXPalitra.pdf.

[119] T. Tajima and J. M. Dawson. Laser electron accelerator. PRL, 43:267–270, 1979.

[120] J. Tate, T. Auguste, H. G. Muller, P. Saliéres, P. Agostini, and L. F. DiMauro. Scaling of
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Hollow Waveguide Modes
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Figure A.1: Illustrations of the hollow waveguide geometry.

Waveguides have a different set of boundary conditions than free space, resulting in a different

set of basis modes. In free-space, the basis modes are plane waves, which can be added together to

construct any arbitrary field profile. For cylindrically-symmetric hollow capillaries, Bessel modes

form a basis. Marcatili solved for the full electromagnetic field components for the hollow waveguide

modes in [79] (neglecting powers of λ/a larger than 1). Three categories of modes are discussed:

circular/transverse electric (TE), circular/transverse magnetic (TM), and hybrid (EH). The TE and

TM modes have azimuthal and radial polarizations, respectively. They also contain a ”doughnut”

intensity profile, with zero amplitude at the center of the mode. HHG can be possible using these

driving modes, as discussed in Section 5.1. Here, the linearly-polarized modes will be investigated

in detail. The general EHpq mode has the following field components within the hollow region of

the waveguide:
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• Internal field components for the EHpq mode in cylindrical coordinates:

Epq,r =

[
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For a EHpq mode to be linearly-polarized along the y-direction, it is easy to show that p must be

equal to 1, resulting in the following field components:

• Internal field components for the y-polarized EH1q mode in Cartesian coordinates:
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Here, B = µ0H, Jp is a pth order Bessel function of the first kind, upq is the qth root of the equation

Jp−1(upq) = 0, n =
√
ε/ε0 is the complex refractive index of the waveguide material, r =

√
x2 + y2,

k = 2π/λ, ki =
√
k2 − γ2

pq, and:

γpq = k

[
1− 1

2

(upq
ka

)2
(

1− i

ka

(n2 + 1)√
n2 − 1

)]
(A.3)

These solutions are valid for λ << a. Under this condition, the z-component of the mode is small,

as are the latter terms in the square brackets (terms containing higher order Bessel functions).
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Furthermore, the boundary conditions at r = a allow the replacement: J0(kir)→ J0

(
u1q

r
a

)
. With

these assumptions, the linearly-polarized modes have the following electric field component along

the y-direction:

E1q,y
∼= J0

(
u1q

r

a

)
ei(γ1qz−ωt) (A.4)

The EH1q modes form a basis that can represent any linearly-polarized mode profile with

cylindrical symmetry. Thus, one can consider an input laser mode incident on the entrance of a

hollow waveguide. The amount of light coupled into each of the waveguide modes can be calculated

through mode decomposition, as investigated in [1]. Consider an input Gaussian mode with power

normalization:

Einput(r) =

√
2

πw(z)2
e−r

2/w(z)2 ŷ∫ 2π

0
dθ

∫ ∞
0

dr r |Einput(r)|2 = 1

(A.5)

The normalized basis functions for the decomposition are:

Ē1q(r) =

√
2

aJ1(u1q)
J0

(
u1q

r

a

)
ŷ∫ 2π

0
dθ

∫ a

0
dr r |E1q,y(r)|2 = 1

(A.6)

The input field can be represented as a sum of the basis functions:

Einput(r) =
∑
q

c1qĒ1q(r), (A.7)

where

c1q =

∫ 2π

0
dθ

∫ a

0
dr r Ē1q(r)

∗ Einput(r)

=
2√

π aw(z)J1(u1q)

∫ 2π

0
dθ

∫ a

0
dr r J0

(
u1q

r

a

)
e−r

2/w(z)2
(A.8)

The power coupled from the input Gaussian beam into each mode is simply P1q = |c1q|2. Note that

this derivation assumes a flat wavefront for the input field (z = 0, w(z) = w0). If, for instance, there

is wavefront curvature (indicating a Gaussian mode that is focusing or defocusing at the waveguide

entrance), then there would be an additional phase term inside the integral of Eq. (A.8) taking the
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form:

exp

(
ikr2

2R(z)

)
= exp

(
i2πN

r2

a2

)
(A.9)

Here, R(z) represents the wavefront radius of curvature, and N is the number of waves between

the center of the waveguide and the wall at r = a. Figure A.2 shows the power coupled into the

first five EH1q modes for input Gaussian modes with varying radii and wavefront curvature.

Because the complex wavenumber γpq is dependent on the mode indices p and q, each mode

will propagate at a different phase velocity, and with a different propagation loss. Therefore, any

input field that couples into more than one waveguide mode will change its spatial profile during

propagation. Beating effects will result in modulation of the peak intensity along the longitudinal

direction. For long propagation distances, the modes with the lowest loss (those with the lowest

values of p and q) will dominate.

The analysis performed for the linearly-polarized Gaussian modes coupled to the hybrid

waveguide modes can be replicated in the case of radially- and azimuthally-polarized modes. In

this scenario, the relevant waveguide modes are the TE0q and TM0q modes from [79]. As mentioned

previously, these have ”doughnut” intensity profiles. Using the TE0q mode to represent this profile,

the basis modes have the following normalized amplitudes:

TE0q = Ē0q(r) =
1√

π aJ0(u2q)
J1

(
u2q

r

a

)
(A.10)

As for the free-space modes with radial/azimuthal polarizations, the solutions are Laguerre-Gauss

beams (or cylidrical vector beams) as described in [175]. The lowest order mode is the LG01 mode,

which has the following normalized amplitude:

LG01 =
2√

π w(z)2
r e−r

2/w(z)2 (A.11)

Note that the LG01 mode contains the same spot width parameter w(z) as for Gaussian modes, but

it does not correspond to the radius at which the intensity drops by 1/e2. Instead, the maximum

intensity of the ”doughnut” mode occurs at a radius r = w/
√

2. The intensity at r = w is equal

to the maximum intensity multiplied by (2/e), where e = 2.718 is the natural Euler number (Fig.
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Figure A.2: The power coupled from Gaussian modes into the first five EH1q waveguide modes.
(A) Coupling of Gaussian modes with flat wavefront and varying mode radii. The optimal coupling
of the Gaussian mode into the EH11 mode occurs for w0/a = 0.6435, with 98% coupling efficiency.
(B) Coupling of Gaussian modes with optimal radii but with varying wavefront curvature.
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A.3). Following the same modal decomposition, the power coupled from the LG01 mode into the

TE0q modes can be calculated, and these are plotted as a function of w0/a in Fig. A.4.

r/w = 1/ 2

= 0.707

I/Imax = 2/e I/Imax = 2/e
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Figure A.3: Plot of the LG01 mode intensity as a function of radius. The beam spot width
parameter w does not carry the same meaning as it does for a Gaussian beam, despite it following
the same w(z) equation through propagation (Eq. (1.76)).
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w0/a = 0.5642
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Figure A.4: The power coupled from azimuthally-polarized LG01 modes into the first five TE0q

waveguide modes. The plots are the same for radially-polarized LG01 modes coupling to the TM0q

modes. The optimal coupling of the LG01 mode into the TE01 mode occurs for w0/a = 0.5642,
with 96.7% coupling efficiency. The wavefront is assumed to be flat for this calculation.
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