News & Research Highlights

Biophysics
The Guiding Light
Published: November 24, 2010

Atomic force microscopy (AFM) just got a whole lot more efficient for studying proteins and other biomolecules. Graduate student Allison Churnside, former research associate Gavin King, and Fellow Tom Perkins recently used a laser to detect the position of sparsely distributed biomolecules on a glass cover slip. Since the same laser is also used to locate the AFM tip, it is now possible to align the microscope tip and sample with a precision of 40 nm, before the AFM tip even touches the sample. The researchers say that the new sample detection scheme solves the “needle in a haystack” problem of nanoscale microscopy.

Read More
Investigators: Thomas Perkins
Chemical Physics
An Occurence at the Solvent Bridge
Published: August 18, 2010

Solvents don’t just dissolve other chemicals (called solutes) and then sit around with their hands in their pockets. Instead, they get involved in all sorts of different ways when dissolved molecules toss electrons around, i.e., they facilitate charge transfer events. In research, the hard part is fi guring out exactly how and when solvent molecules get involved when an electron hops from one solute molecule to another. For example, in liquids (which do most of the dissolving), solvent molecules move constantly, making it very challenging to see what they’re doing when charge transfer events occur.

Read More
Investigators: W. Carl Lineberger
Nanoscience
Curling Up in a Nanobathtub
Published: August 18, 2010

In microscopic studies of single biological molecules or nanoparticles, it’s useful to be able to precisely control the temperature around the sample. Until now, heating has required electric currents that warm up microscope stages, slides, and optics in addition to the specimen under study. Such methods are slow and hard to control, not to mention capable of accidentally altering the chemistry or structure of the sample. Now there is a better solution for keeping samples nice and warm: The nanobathtub.

Read More
Investigators: David Nesbitt
Atomic & Molecular Physics
The Mysterious Fermi Gap
Published: August 18, 2010

In 2008, the Deborah Jin Group introduced a new technique, known as atom photoemission spectroscopy, to study a strongly interacting ultracold gas cloud of potassium (40K) atoms at the crossover point between Bose-Einstein condensation and superfl uidity via the pairing of fermionic atoms (See JILA Light & Matter, Summer 2008). Near the crossover point, the physics of superfl uidity in an atom gas system may be connected to that of high-temperature superconductivity.

Read More
Investigators: Deborah Jin
Atomic & Molecular Physics
Them's the Brakes
Published: August 18, 2010

The Bohn group has just come up with an exciting, really complicated experiment for someone else to do. This is something theorists like graduate student Ryan Wilson, former research associate Shai Ronen, and Fellow John Bohn get a kick out of. In this case, they’re recommending an experiment to measure how fast a tiny blue laser would have to move through a dipolar Bose-Einstein condensate (BEC) to create ripples.

Read More
Investigators: John Bohn
Atomic & Molecular Physics
Redefining Chemistry at JILA
Published: May 06, 2010

Fellows Deborah Jin, Jun Ye, and John Bohn are exploring new scientific territory in cold-molecule chemistry. Experimentalists Jin and Ye and their colleagues can now manipulate, observe, and control ultralow-temperature potassium-rubidium (KRb) molecules in their lowest quantum-mechanical state. Theorist Bohn analyzes what the experimentalists see and predicts molecule behaviors under different conditions.

Read More
Investigators: Deborah Jin | Jun Ye | Konrad Lehnert
Atomic & Molecular Physics
Freeze Frame
Published: April 17, 2010

The cold-molecule collaboration has developed a method for directly imaging ultracold ground-state KRb molecules. Their old method required the transfer of ultracold KRb molecules into a Feshbach state, which is sensitive to electric and magnetic fields. Thus researchers had to turn off the electric field and keep the magnetic field at a fixed value during the imaging process.

Read More
Investigators: Deborah Jin | Jun Ye
Chemical Physics
Good Vibrations
Published: April 03, 2010

Mathias Weber and his team recently did the following experiment: They excited the methyl group (CH3) on one end of nitromethane anion (CH3NO2-) with an infrared (IR) laser. The laser got the methyl group vibrating with enough energy to get the nitro group (NO2) at the other end of the molecule wagging hard enough to spit out its extra electron.

Read More
Investigators: J. Mathias Weber
Atomic & Molecular Physics | Precision Measurement
The BEC Transporter
Published: April 02, 2010

The Dana Z. Anderson group has developed a microchip-based system that not only rapidly produces Bose-Einstein condensates (BECs), but also is compact and transportable. The complete working system easily fits on an average-sized rolling cart. This technology opens the door to using ultracold matter in gravity sensors, atomic clocks, inertial sensors, as well as in electric- and magnetic-field sensing. Research associate Dan Farkas demonstrated the new system at the American Physical Society’s March 2010 meeting, held in Portland, Oregon, March 15–19, 2010.

Read More
Investigators: Dana Anderson
Precision Measurement
Nanomeasurement is a Matter of the Utmost Precision
Published: March 06, 2010

Not content with stepping on their bathroom scales each morning to watch the arrow spin round to find their weights, former research associate John Teufel and Fellow Konrad Lehnert decided to build a nifty system that could measure more diminutive forces of half an attoNewton (0.5 x 10-18 N). Their new system consists of a tiny oscillating mechanical wire embedded in a microwave cavity with an integrated microwave interferometer, two amplifiers (one of them virtually noiseless), and a signal detector.

Read More
Investigators: Konrad Lehnert
Precision Measurement
Fermions in Collision?
Published: September 07, 2009

According to the laws of quantum mechanics, identical fermions at very low temperatures can’t collide. These unfriendly subatomic particles, atoms, or molecules simply will not share the same piece of real estate with an identical twin. A few years back, researchers in the Ye lab considered this unneighborly behavior a big advantage in designing a new optical atomic clock based on an ensemble of identical 87Sr atoms. 

Read More
Investigators: Jun Ye
Atomic & Molecular Physics
Fortune’s Bubbles Rise and Fall
Published: August 02, 2009

A while back, former graduate student Scott Papp, graduate student Juan Pino, and Fellow Carl Wieman decided to see what would happen as they changed the magnetic field around a mixture of two different rubidium (Rb) isotopes during Bose-Einstein condensation.

Read More
Atomic & Molecular Physics
Extreme "Sheep" Herding
Published: July 30, 2009

The new molecules are as big as a virus. They’re ultracold. And, they’re held together by a ghostly quantum mechanical force field with the energy of about 100 billionths of an electron volt. These strange diatomic rubidium (Rb) molecules are the world’s first long-range Rydberg molecules. They were recently formed in Tilman Pfau’s laboratory at the University of Stuttgart from an ultracold cloud of Rb atoms. 

Read More
Investigators: Chris Greene
Atomic & Molecular Physics
Rave Reviews for the Efimov Quartet
Published: July 15, 2009

The most peculiar and fragile "molecules" ever discovered are the weakly bound triatomic Efimov molecules that form under specific conditions in a Bose-Einstein condensate (BEC). JILA theorists have now shown that such molecules can interact with an additional atom to form "daughter" molecules, which inherit many of their mother’s characteristics.

Read More
Investigators: Chris Greene
Atomic & Molecular Physics | Nanoscience
Holy Monodromy!
Published: July 02, 2009

Monodromy literally means "once around." The term is applied in mathematics to systems that run around a singularity. In these systems, a parameter that describes the state of the system changes when the system loops around the singularity. Since monodromy’s discovery in 1980, mathematicians have predicted that many physical systems have it, including pendulums and tops as well as atoms and molecules.

Read More
Investigators: Heather Lewandowski
Chemical Physics
A Light Changing Experience
Published: April 29, 2009

The Weber group wants to understand how the individual building blocks of DNA interact with ultraviolet (UV) light. Such knowledge would be an important step toward gaining a detailed understanding of the molecular processes responsible for the UV-induced DNA damage that results in mutations and can lead to cancer or cell death.

Read More
Investigators: J. Mathias Weber
Atomic & Molecular Physics
Free Association Tunes
Published: April 14, 2009

Starting with ultracold atoms in a Bose-Einstein condensate, it’s possible to create coherent superpositions of atoms and molecules. Fellow Carl Wieman and others have done exactly this. Recently, the Jin group wondered if it would be possible to accomplish the same thing starting with a normal gas cloud of atoms.

Read More
Investigators: Deborah Jin
Biophysics | Chemical Physics | Nanoscience
It Takes Two to Tango
Published: April 12, 2009

Quantum dots are tiny structures made of semiconductor materials. With diameters of 1–5 nm, they are small enough to constrain their constituents in all three dimensions. This constraint means that when a photon of light knocks an electron into the conduction band and creates an electron/hole pair, the pair can’t get out of the dot.

Read More
Investigators: David Nesbitt
Atomic & Molecular Physics
Altered States
Published: April 12, 2009

Understanding how molecules collide is a hot topic in ultracold physics. Knowing the number of times molecules crash into each other and what happens when they do helps theorists predict the best ways to cool molecules to merely cold (1 K–1 mK), pretty cold (1 mK–1 µk), or ultracold (< 1 µK) temperatures.

Read More
Investigators: John Bohn
Biophysics | Nanoscience
How to Marry a Microscope
Published: April 10, 2009

The most important step for a microscope wanting to marry another microscope is finding the right partner. A professional matchmaker, such as the Perkins lab, might be just the ticket. The group recently presided over the nuptials of atomic force microscopy and optical-trapping microscopy. Research associate Gavin King, graduate students Ashley Carter and Allison Churnside, CU freshman Louisa Eberle, and Fellow Tom Perkins officiated. The marriage produced an ultrastable atomic force microscope (AFM) capable of precisely studying proteins in real-world (ambient) conditions.

Read More
Related Publications: Ultrastable atomic force microscopy: atomic-scale stability and registration in ambient conditionsInvestigators: Thomas Perkins