TY - THES AU - Carrie Weidner AB -
Since the first demonstrations in 1991, atom interferometry has been a burgeoning field of research. The work done in this field is motivated by the potential sensitivity improvements that atom-based devices can have over the current state-of-the-art light- and MEMS-based devices. This dissertation presents a new and unique approach to atom interferometry in that we perform the basic interferometric sequence of splitting, propagation, reflection, reverse-propagation, and recom- bination with atoms trapped in a phase-modulated (shaken) optical lattice. In both simulation and experiment we demonstrate a one-dimensional shaken lattice interferometer configured as an accelerometer. The interferometry sequence is developed through the use of learning and optimal control algorithms that allow us to implement the desired state-to-state transformations and per- form the desired operations, e.g. splitting and recombination of the atoms trapped in the lattice. This device has a sensitivity that scales as the square of the interrogation time and an ability to distinguish both the magnitude and sign of an applied acceleration signal. Furthermore we show that we can tailor the transfer function of the interferometer to be sensitive to a signal of inter- est, e.g. an AC signal of a given frequency. Finally, we explore the analytics of shaken lattice interferometry and offer some suggestions as to the future of this new technology.
CY - Boulder DA - 2018-03 N2 -Since the first demonstrations in 1991, atom interferometry has been a burgeoning field of research. The work done in this field is motivated by the potential sensitivity improvements that atom-based devices can have over the current state-of-the-art light- and MEMS-based devices. This dissertation presents a new and unique approach to atom interferometry in that we perform the basic interferometric sequence of splitting, propagation, reflection, reverse-propagation, and recom- bination with atoms trapped in a phase-modulated (shaken) optical lattice. In both simulation and experiment we demonstrate a one-dimensional shaken lattice interferometer configured as an accelerometer. The interferometry sequence is developed through the use of learning and optimal control algorithms that allow us to implement the desired state-to-state transformations and per- form the desired operations, e.g. splitting and recombination of the atoms trapped in the lattice. This device has a sensitivity that scales as the square of the interrogation time and an ability to distinguish both the magnitude and sign of an applied acceleration signal. Furthermore we show that we can tailor the transfer function of the interferometer to be sensitive to a signal of inter- est, e.g. an AC signal of a given frequency. Finally, we explore the analytics of shaken lattice interferometry and offer some suggestions as to the future of this new technology.
PB - University of Colorado Boulder PP - Boulder PY - 2018 EP - 196 TI - Shaken Lattice Interferometry VL - Ph.D. ER -