TY - JOUR AU - Brendan McBennett AU - Yuka Esashi AU - Nicholas Jenkins AU - Albert Beardo AU - Yunzhe Shao AU - Emma Nelson AU - Theodore Culman AU - Begoña Abad AU - Michael Tanksalvala AU - Travis Frazer AU - Samuel Marks AU - Weilun Chao AU - Sadegh Yazdi AU - Joshua Knobloch AU - Henry Kapteyn AU - Margaret Murnane AB -
Next-generation nanoelectronic, energy, and quantum technologies require increasingly stringent thermal, optical, mechanical, and electrical properties of component materials, often surpassing the limits of widely used materials such as silicon. Diamond, an ultrawide bandgap semiconductor, is a promising material for these applications because of its very high stiffness, thermal conductivity, and electron mobility. However, incorporating diamond into devices that require high-quality metal-diamond interfaces is challenging. In this work, we use a suite of electron microscopy measurements to reveal an ultrathin amorphous carbon layer that emerges at metal-diamond interfaces after electron beam lithography. Using extreme ultraviolet scatterometry, we nondestructively determine lower bounds on the layer's Young's modulus and thermal conductivity, which at
Next-generation nanoelectronic, energy, and quantum technologies require increasingly stringent thermal, optical, mechanical, and electrical properties of component materials, often surpassing the limits of widely used materials such as silicon. Diamond, an ultrawide bandgap semiconductor, is a promising material for these applications because of its very high stiffness, thermal conductivity, and electron mobility. However, incorporating diamond into devices that require high-quality metal-diamond interfaces is challenging. In this work, we use a suite of electron microscopy measurements to reveal an ultrathin amorphous carbon layer that emerges at metal-diamond interfaces after electron beam lithography. Using extreme ultraviolet scatterometry, we nondestructively determine lower bounds on the layer's Young's modulus and thermal conductivity, which at