TY - JOUR AU - Arian Vezvaee AU - Nanako Shitara AU - Shuo Sun AU - Andrés Montoya-Castillo AB - AbstractSpectral characterization of noise environments that lead to the decoherence of qubits is critical to developing robust quantum technologies. While dynamical decoupling offers one of the most successful approaches to characterize noise spectra, it necessitates applying large sequences of π pulses that increase the complexity and cost of the method. Here, we introduce a noise spectroscopy method that utilizes only the Fourier transform of free induction decay or spin echo measurements, thus removing the need for the application many π pulses. We show that our method faithfully recovers the correct noise spectra for a variety of different environments (including 1/f-type noise) and outperforms previous dynamical decoupling schemes while significantly reducing their experimental overhead. We also discuss the experimental feasibility of our proposal and demonstrate its robustness in the presence of statistical measurement error. Our method is applicable to a wide range of quantum platforms and provides a simpler path toward a more accurate spectral characterization of quantum devices, thus offering possibilities for tailored decoherence mitigation. BT - npj Quantum Information DO - 10.1038/s41534-024-00841-w IS - 1 N2 - AbstractSpectral characterization of noise environments that lead to the decoherence of qubits is critical to developing robust quantum technologies. While dynamical decoupling offers one of the most successful approaches to characterize noise spectra, it necessitates applying large sequences of π pulses that increase the complexity and cost of the method. Here, we introduce a noise spectroscopy method that utilizes only the Fourier transform of free induction decay or spin echo measurements, thus removing the need for the application many π pulses. We show that our method faithfully recovers the correct noise spectra for a variety of different environments (including 1/f-type noise) and outperforms previous dynamical decoupling schemes while significantly reducing their experimental overhead. We also discuss the experimental feasibility of our proposal and demonstrate its robustness in the presence of statistical measurement error. Our method is applicable to a wide range of quantum platforms and provides a simpler path toward a more accurate spectral characterization of quantum devices, thus offering possibilities for tailored decoherence mitigation. PB - Springer Science and Business Media LLC PY - 2024 EP - 52 T2 - npj Quantum Information TI - Fourier transform noise spectroscopy VL - 10 SN - 2056-6387 ER -