TY - JOUR AU - Alec Cao AU - William Eckner AU - Theodor Yelin AU - Aaron Young AU - Sven Jandura AU - Lingfeng Yan AU - Kyungtae Kim AU - Guido Pupillo AU - Jun Ye AU - Nelson Oppong AU - Adam Kaufman AB -
Many-particle entanglement is a key resource for achieving the fundamental precision limits of a quantum sensor. Optical atomic clocks, the current state-of-the-art in frequency precision, are a rapidly emerging area of focus for entanglement-enhanced metrology. Augmenting tweezer-based clocks featuring microscopic control and detection with the high-fidelity entangling gates developed for atom-array information processing offers a promising route towards leveraging highly entangled quantum states for improved optical clocks. Here we develop and employ a family of multi-qubit Rydberg gates to generate 'Schrödinger cat' states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 9 optical clock qubits in a programmable atom array. In an atom-laser comparison at sufficiently short dark times, we demonstrate a fractional frequency instability below the standard quantum limit using GHZ states of up to 4 qubits. A key challenge to improving the optimal achievable clock precision with GHZ states is their reduced dynamic range. Towards overcoming this hurdle, we simultaneously prepare a cascade of varying-size GHZ states to perform unambiguous phase estimation over an extended interval. These results demonstrate key building blocks for approaching Heisenberg-limited scaling of optical atomic clock precision.
BT - Submitted N2 -Many-particle entanglement is a key resource for achieving the fundamental precision limits of a quantum sensor. Optical atomic clocks, the current state-of-the-art in frequency precision, are a rapidly emerging area of focus for entanglement-enhanced metrology. Augmenting tweezer-based clocks featuring microscopic control and detection with the high-fidelity entangling gates developed for atom-array information processing offers a promising route towards leveraging highly entangled quantum states for improved optical clocks. Here we develop and employ a family of multi-qubit Rydberg gates to generate 'Schrödinger cat' states of the Greenberger-Horne-Zeilinger (GHZ) type with up to 9 optical clock qubits in a programmable atom array. In an atom-laser comparison at sufficiently short dark times, we demonstrate a fractional frequency instability below the standard quantum limit using GHZ states of up to 4 qubits. A key challenge to improving the optimal achievable clock precision with GHZ states is their reduced dynamic range. Towards overcoming this hurdle, we simultaneously prepare a cascade of varying-size GHZ states to perform unambiguous phase estimation over an extended interval. These results demonstrate key building blocks for approaching Heisenberg-limited scaling of optical atomic clock precision.
PY - 2024 T2 - Submitted TI - Multi-qubit gates and Schrödinger cat states in an optical clock UR - https://arxiv.org/abs/2402.16289 ER -