TY - JOUR AU - Jarrod Reilly AU - Simon Jäger AU - John Wilson AU - John Cooper AU - Sebastian Eggert AU - Murray Holland AB -

We present a simple and effective method to create highly entangled spin states on a faster timescale than that of the commonly employed one-axis twisting (OAT) model. We demonstrate that by periodically driving the Dicke Hamiltonian at a resonance frequency, the system effectively becomes a two-axis countertwisting Hamiltonian, which is known to quickly create Heisenberg limit scaled entangled states. For these states we show that simple quadrature measurements can saturate the ultimate precision limit for parameter estimation determined by the quantum Cramér-Rao bound. An example experimental realization of the periodically driven scheme is discussed with the potential to quickly generate momentum entanglement in a recently described experimental vertical cavity system. We analyze effects of collective dissipation in this vertical cavity system and find that our squeezing protocol can be more robust than the previous realization of OAT.

BT - Physical Review Research DA - 2024-07 DO - 10.1103/PhysRevResearch.6.033090 N2 -

We present a simple and effective method to create highly entangled spin states on a faster timescale than that of the commonly employed one-axis twisting (OAT) model. We demonstrate that by periodically driving the Dicke Hamiltonian at a resonance frequency, the system effectively becomes a two-axis countertwisting Hamiltonian, which is known to quickly create Heisenberg limit scaled entangled states. For these states we show that simple quadrature measurements can saturate the ultimate precision limit for parameter estimation determined by the quantum Cramér-Rao bound. An example experimental realization of the periodically driven scheme is discussed with the potential to quickly generate momentum entanglement in a recently described experimental vertical cavity system. We analyze effects of collective dissipation in this vertical cavity system and find that our squeezing protocol can be more robust than the previous realization of OAT.

PY - 2023 EP - 033090 T2 - Physical Review Research TI - Speeding Up Squeezing with a Periodically Driven Dicke Model UR - https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.033090 VL - 6 ER -