TY - CONF AU - Juri Toomre AB -

We reflect upon a few of the research challenges in stellar convection and dynamo theory that are likely to be addressed in the next five or so years. These deal firstly with the Sun and continuing study of the two boundary layers at the top and bottom of its convection zone, namely the tachocline and the near-surface shear layer, both of which are likely to have significant roles in how the solar dynamo may be operating. Another direction concerns studying core convection and dynamo action within the central regions of more massive A, B and O-type stars, for the magnetism may have a key role in controlling the winds from these stars, thus influencing their ultimate fate. Such studies of the interior dynamics of massive stars are becoming tractable with recent advances in codes and supercomputers, and should also be pursued with some vigor.

BT - Proceedings of the International Astronomical Union DA - 2010-08 DO - 10.1017/S1743921311017777 N2 -

We reflect upon a few of the research challenges in stellar convection and dynamo theory that are likely to be addressed in the next five or so years. These deal firstly with the Sun and continuing study of the two boundary layers at the top and bottom of its convection zone, namely the tachocline and the near-surface shear layer, both of which are likely to have significant roles in how the solar dynamo may be operating. Another direction concerns studying core convection and dynamo action within the central regions of more massive A, B and O-type stars, for the magnetism may have a key role in controlling the winds from these stars, thus influencing their ultimate fate. Such studies of the interior dynamics of massive stars are becoming tractable with recent advances in codes and supercomputers, and should also be pursued with some vigor.

PY - 2010 SP - 347 EP - 352 T2 - Proceedings of the International Astronomical Union TI - Onward from solar convection to dynamos in cores of massive stars VL - 6 ER -