TY - JOUR KW - High Energy Astrophysical Phenomena (astro-ph.HE) KW - FOS: Physical sciences KW - FOS: Physical sciences AU - José Ortuño-Macías AU - Krzysztof Nalewajko AU - Dmitri Uzdensky AU - Mitchell Begelman AU - Gregory Werner AU - Alexander Chen AU - Bhupendra Mishra AB - Relativistic magnetized jets, such as those from AGN, GRBs and XRBs, are susceptible to current- and pressure-driven MHD instabilities that can lead to particle acceleration and non-thermal radiation. Here we investigate the development of these instabilities through 3D kinetic simulations of cylindrically symmetric equilibria involving toroidal magnetic fields with electron-positron pair plasma. Generalizing recent treatments by Alves et al. (2018) and Davelaar et al. (2020), we consider a range of initial structures in which the force due to toroidal magnetic field is balanced by a combination of forces due to axial magnetic field and gas pressure. We argue that the particle energy limit identified by Alves et al. (2018) is due to the finite duration of the fast magnetic dissipation phase. We find a rather minor role of electric fields parallel to the local magnetic fields in particle acceleration. In all investigated cases a kink mode arises in the central core region with a growth timescale consistent with the predictions of linearized MHD models. In the case of a gas-pressure-balanced (Z-pinch) profile, we identify a weak local pinch mode well outside the jet core. We argue that pressure-driven modes are important for relativistic jets, in regions where sufficient gas pressure is produced by other dissipation mechanisms. BT - The Astrophysical Journal DA - 137 DO - 10.3847/1538-4357/ac6acd/meta IS - 2 N2 - Relativistic magnetized jets, such as those from AGN, GRBs and XRBs, are susceptible to current- and pressure-driven MHD instabilities that can lead to particle acceleration and non-thermal radiation. Here we investigate the development of these instabilities through 3D kinetic simulations of cylindrically symmetric equilibria involving toroidal magnetic fields with electron-positron pair plasma. Generalizing recent treatments by Alves et al. (2018) and Davelaar et al. (2020), we consider a range of initial structures in which the force due to toroidal magnetic field is balanced by a combination of forces due to axial magnetic field and gas pressure. We argue that the particle energy limit identified by Alves et al. (2018) is due to the finite duration of the fast magnetic dissipation phase. We find a rather minor role of electric fields parallel to the local magnetic fields in particle acceleration. In all investigated cases a kink mode arises in the central core region with a growth timescale consistent with the predictions of linearized MHD models. In the case of a gas-pressure-balanced (Z-pinch) profile, we identify a weak local pinch mode well outside the jet core. We argue that pressure-driven modes are important for relativistic jets, in regions where sufficient gas pressure is produced by other dissipation mechanisms. PB - arXiv PY - 2022 T2 - The Astrophysical Journal TI - Kinetic Simulations of Instabilities and Particle Acceleration in Cylindrical Magnetized Relativistic Jets UR - https://iopscience.iop.org/article/10.3847/1538-4357/ac6acd/meta VL - 931 ER -