TY - JOUR AU - Michael Perlin AU - Diego Barberena AU - Mikhail Mamaev AU - Bhuvanesh Sundar AU - Robert Lewis-Swan AU - Ana Maria Rey AB - We study multilevel fermions in an optical lattice described by the Hubbard model with on site SU(n)-symmetric interactions. We show that in an appropriate parameter regime this system can be mapped onto a spin model with all-to-all SU(n)-symmetric couplings. Raman pulses that address internal spin states modify the atomic dispersion relation and induce spin-orbit coupling, which can act as a synthetic inhomogeneous magnetic field that competes with the SU(n) exchange interactions. We investigate the mean-field dynamical phase diagram of the resulting model as a function of n and different initial configurations that are accessible with Raman pulses. Consistent with previous studies for n=2, we find that for some initial states the spin model exhibits two distinct dynamical phases that obey simple scaling relations with n. Moreover, for n>2 we find that dynamical behavior can be highly sensitive to initial intra-spin coherences. Our predictions are readily testable in current experiments with ultracold alkaline-earth(-like) atoms. BT - Phys. Rev. A DA - 2022-02 DO - 10.1103/PhysRevA.105.023326 N2 - We study multilevel fermions in an optical lattice described by the Hubbard model with on site SU(n)-symmetric interactions. We show that in an appropriate parameter regime this system can be mapped onto a spin model with all-to-all SU(n)-symmetric couplings. Raman pulses that address internal spin states modify the atomic dispersion relation and induce spin-orbit coupling, which can act as a synthetic inhomogeneous magnetic field that competes with the SU(n) exchange interactions. We investigate the mean-field dynamical phase diagram of the resulting model as a function of n and different initial configurations that are accessible with Raman pulses. Consistent with previous studies for n=2, we find that for some initial states the spin model exhibits two distinct dynamical phases that obey simple scaling relations with n. Moreover, for n>2 we find that dynamical behavior can be highly sensitive to initial intra-spin coherences. Our predictions are readily testable in current experiments with ultracold alkaline-earth(-like) atoms. PY - 2022 EP - 023326 T2 - Phys. Rev. A TI - Engineering infinite-range SU ( n ) interactions with spin-orbit-coupled fermions in an optical lattice VL - 105 ER -