TY - JOUR KW - Physics and Astronomy (miscellaneous) AU - Daniel Palken AU - Benjamin Brubaker AU - M. Malnou AU - Al Kenany AU - K. Backes AU - S. Cahn AU - Y. Gurevich AU - S. Lamoreaux AU - S. Lewis AU - R. Maruyama AU - N. Rapidis AU - J. Root AU - M. Simanovskaia AU - T. Shokair AU - Sukhman Singh AU - D. Speller AU - I. Urdinaran AU - K. van Bibber AU - L. Zhong AU - Konrad Lehnert AB - In experiments searching for axionic dark matter, the use of the standard threshold-based data analysis discards valuable information. We present a Bayesian analysis framework that builds on an existing processing protocol [B. M. Brubaker, L. Zhong, S. K. Lamoreaux, K. W. Lehnert, and K. A. van Bibber, Phys. Rev. D 96, 123008 (2017)] to extract more information from the data of coherent axion detectors such as operating haloscopes. The analysis avoids logical subtleties that accompany the standard analysis framework and enables greater experimental flexibility on future data runs. Performing this analysis on the existing data from the HAYSTAC experiment, we find improved constraints on the axion-photon coupling gγ while also identifying the most promising regions of parameter space within the 23.15–24.0 μeV mass range. A comparison with the standard threshold analysis suggests a 36% improvement in scan rate from our analysis, demonstrating the utility of this framework for future axion haloscope analyses. BT - Physical Review D DA - 2020-06 DO - 10.1103/physrevd.101.123011 IS - 12 N2 - In experiments searching for axionic dark matter, the use of the standard threshold-based data analysis discards valuable information. We present a Bayesian analysis framework that builds on an existing processing protocol [B. M. Brubaker, L. Zhong, S. K. Lamoreaux, K. W. Lehnert, and K. A. van Bibber, Phys. Rev. D 96, 123008 (2017)] to extract more information from the data of coherent axion detectors such as operating haloscopes. The analysis avoids logical subtleties that accompany the standard analysis framework and enables greater experimental flexibility on future data runs. Performing this analysis on the existing data from the HAYSTAC experiment, we find improved constraints on the axion-photon coupling gγ while also identifying the most promising regions of parameter space within the 23.15–24.0 μeV mass range. A comparison with the standard threshold analysis suggests a 36% improvement in scan rate from our analysis, demonstrating the utility of this framework for future axion haloscope analyses. PB - American Physical Society (APS) PY - 2020 EP - 123011 T2 - Physical Review D TI - Improved analysis framework for axion dark matter searches VL - 101 SN - 2470-0010, 2470-0029 ER -