@article{12364, author = {Daniel Carney and Gordan Krnjaic and D. Moore and Cindy Regal and Gadi Afek and Sunil Bhave and Benjamin Brubaker and Thomas Corbitt and Jonathan Cripe and Nicole Crisosto and Andrew Geraci and Sohitri Ghosh and Jack Harris and Anson Hook and Edward Kolb and Jonathan Kunjummen and Rafael Lang and T. Li and T. Lin and Z. Liu and J. Lykken and Lorenzo Magrini and Jack Manley and Nobuyuki Matsumoto and Alissa Monte and Fernando Monteiro and Thomas Purdy and C. Riedel and Robinjeet Singh and Surendra Singh and Kanupriya Sinha and J. Taylor and J. Qin and D. Wilson and Y. Zhao}, title = {Mechanical quantum sensing in the search for dark matter}, abstract = {Numerous astrophysical and cosmological observations are best explained by the existence of dark matter, a mass density which interacts only very weakly with visible, baryonic matter. Searching for the extremely weak signals produced by this dark matter strongly motivate the development of new, ultra-sensitive detector technologies. Paradigmatic advances in the control and readout of massive mechanical systems, in both the classical and quantum regimes, have enabled unprecedented levels of sensitivity. In this white paper, we outline recent ideas in the potential use of a range of solid-state mechanical sensing technologies to aid in the search for dark matter in a number of energy scales and with a variety of coupling mechanisms.}, year = {2021}, journal = {Quantum Science and Technology}, volume = {6}, pages = {024002}, month = {2021-01}, publisher = {IOP Publishing}, issn = {2058-9565}, url = {https://iopscience.iop.org/article/10.1088/2058-9565/abcfcd}, doi = {10.1088/2058-9565/abcfcd}, }