News & Highlights

Research Highlights

Good Vibrations: The Experiment
Published: 03-19-2014
The Regal-Lehnert collaboration has just taken a significant step towards the goal of one day building a quantum information network. Large-scale fiber-optic networks capable of preserving fragile quantum states (which encode information) will be necessary to realize the benefits of superfast quantum computing. Such networks will require new technology to reversibly convert low-frequency microwave light (i.e., electrical signals) to high-frequency infrared or visible light, without losing any...
Dealing with Loss
Published: 03-05-2014
There’s exciting news from JILA’s ultracold molecule collaboration. The Jin, Ye, Holland, and Rey groups have come up with new theory (verified by experiment) that explains the suppression of chemical reactions between potassium-rubidium (KRb) molecules in the KRb quantum simulator. The main reason the molecules do not collide and react is continuous measurement of molecule loss from the simulator. That it works this way is a consequence of the quantum Zeno effect, also known as the watched pot...
Fog Island
Published: 02-26-2014
When Andy Almand-Hunter and his colleagues in the Cundiff group shined a laser on a sample of gallium arsenide (GaAs), the last thing they were expecting to create was a fog of liquid-like quantum droplets, which the group named "dropletons." Dropletons are a new, stable form of matter much like an ordinary liquid—with one key difference. Unlike normal everyday liquids, quantum droplets contain charged particles. The particles are negatively charged electrons and positively charged “holes.”...
bR Phone Home
Published: 02-04-2014
The groups of Fellow Adjoint Markus Raschke and Fellow Tom Perkins joined forces recently to shine light onto a bacterial membrane protein called bacteriorhodopsin (bR). They used a new infrared (IR) light imaging system with a spatial resolution and chemical sensitivity of just a few bR molecules. In their experiment, the tip of an atomic force microscope (AFM) acted like an antenna for the IR light, focusing it onto the sample. The AFM-tip antenna then helped capture the signal emitted by the...
A Clockwork Blue Takes the Gold
Published: 01-22-2014
JILA and NIST labs are well on the way to creating astonishingly accurate optical atomic clocks based on the neutral atoms strontium (Sr) and ytterbium (Yb). The new technologies are already capable of the most meticulous timekeeping in human history. JILA Fellow Jun Ye’s group has developed an optical atomic clock that uses neutral Sr atoms held in an optical lattice (i.e., crystal of light) to generate the ticks of its clock. The Sr-lattice clock can precisely control the quantum states of...
Mission: Control
Published: 01-14-2014
Capturing and controlling the fleeting dance of electrons as they rearrange during a chemical reaction has been a long-standing challenge in science for several decades. Since electrons are much lighter than atoms, they can respond almost instantaneously – on time scales of hundreds of attoseconds, where an attosecond is 10-18 s. Fortunately, over the last decade scientists have created attosecond x-ray strobe lights that are fast enough to freeze the motion of electrons. However, simply...
Puff the Magic Atoms
Published: 01-13-2014
The Cornell and Jin groups have just met the challenge of creating and studying an extremely strongly interacting Bose-Einstein condensate (BEC). This feat was reported in Nature Physics online January 12, 2014. An example of an ordinary weakly interacting Bose-Einstein condensate (BEC) is a quantum gas of rubidium atoms (85Rb) all piled up in a little ball whose temperature is a chilly 10 nK. Normally, the interactions between these atoms are weak, and the atoms behave as if they were much...
The Dipolar Express
Published: 12-06-2013
Physicists wonder about some pretty strange things. For instance, one burning question is: How round is the electron? While the simplest picture of the electron is a perfect sphere, it is possible that it is instead shaped like an egg. The egg shape would look a bit like a tiny separation of positive and negative charges. Physicists call this kind of charge separation an electric dipole moment, or EDM. The existence of an EDM in the electron or any other subatomic particle will have a profound...
The Squeeze Machine
Published: 10-11-2013
Research associate Tom Purdy and his colleagues in the Regal group have just built an even better miniature light-powered machine that can now strip away noise from a laser beam. Their secret: a creative workaround of a quantum limit imposed by the Heisenberg Uncertainty Principle. This limit makes it impossible to simultaneously reduce the noise on both the amplitude and phase of light inside interferometers and other high-tech instruments that detect miniscule position changes. Purdy’s team...
The Great Spin Swap
Published: 09-18-2013
Research associate Bo Yan and his colleagues recently observed spin exchanges in ultracold potassium-rubidium (KRb) molecules inside an optical lattice (a crystal of light formed by interacting laser beams). In solid materials, such spin exchanges are the building blocks of advanced materials and exotic behavior. The spin exchanges occurred when a rotationally excited KRb molecule interacted with a non-rotating KRb molecule in the ground state. Amazingly, the two molecules could be relatively...
The Magnificent Quantum Laboratory
Published: 08-08-2013
Because quantum mechanics is crucial to understanding the behavior of everything in the Universe, one can understand key elements of the behavior of a neutron star by investigating the behavior of an atomic system in the laboratory. This is the promise of the new quantum simulator in the Ye labs. It is a fully controllable quantum system that is being used as a laboratory to study the behavior of other less controllable and more poorly understood quantum systems. Most people would imagine such...
Life in the Fast Lane
Published: 07-26-2013
Many people are familiar with the beautiful harmonies created when two sound waves interfere with each other, producing a periodic and repeating pattern that is music to our ears. In a similar fashion, two interfering x-ray waves may soon make it possible to create the fastest possible strobe light ever made. This strobe light will blink fast enough to allow researchers to study the nuclei of atoms and other incredibly tiny structures. The new strobe light is actually very fast coherent laser-...
Quantum Legoland
Published: 07-01-2013
The quantum world is not quite as mysterious as we thought it was. It turns out that there are highways into understanding this strange universe. And, graduate students Minghui Xu and David Tieri with Fellow Murray Holland have just discovered one such superhighway that has been around since the 1950s. Traveling along this superhighway has made it possible to understand the quantum behavior of hundreds of atoms inside every laser used in JILA, including the superradiant laser in the Thompson...
Trapper Marmot and the Stone Cold Molecules
Published: 04-01-2013
The Ye group has opened a new gateway into the relatively unexplored terrain of ultracold chemistry. Research associate Matt Hummon, graduate students Mark Yeo and Alejandra Collopy, newly minted Ph.D. Ben Stuhl, Fellow Jun Ye, and a visiting colleague Yong Xia (East China Normal University) have built a magneto-optical trap (MOT) for yttrium oxide (YO) molecules (Figure 1). The two-dimensional MOT uses three lasers and carefully adjusted magnetic fields to partially confine, concentrate, and...
The Transporter
Published: 03-15-2013
The Lehnert group has come up with a clever way to transport and store quantum information. Research associate Tauno Palomaki, graduate student Jennifer Harlow, NIST colleagues Jon Teufel and Ray Simmonds, and Fellow Konrad Lehnert have encoded a quantum state onto an electric circuit and figured out how to transport the information from the circuit into a tiny mechanical drum, where is stored. Palomaki and his colleagues can retrieve the information by reconverting it into an electrical signal...
The Big Chill
Published: 12-19-2012
The Ye and Bohn groups have made a major advance in the quest to prepare “real-world” molecules at ultracold temperatures. As recently reported in Nature, graduate students Ben Stuhl and Mark Yeo, research associate Matt Hummon, and Fellow Jun Ye succeeded in cooling hydroxyl radical molecules (*OH) down to temperatures of no more than five thousandths of a degree above absolute zero (5mK). The final temperature of the experiment may well have been even lower because the group’s temperature...
The Heart of Darkness
Published: 12-18-2012
When the Thompson group first demonstrated its innovative “superradiant” laser the team noticed that sometimes the amount of light emitted by the laser would fluctuate up and down.  The researchers wondered what was causing these fluctuations. They were especially concerned that whatever it was could also be a problem in future lasers based on the same principles. In the group’s superradiant laser, a million laser-cooled rubidium atoms at the heart of the laser act as the primary repository of...
The Amazing Plasmon
Published: 12-12-2012
The Nesbitt group has figured out the central role of “plasmon resonances” in light-induced emission of electrons from gold or silver nanoparticles. Plasmons are rapid-fire electron oscillations of freely moving (conduction) electrons in metals. They are caused by light of just the “right frequency.” In metal nanoparticles, the right frequency exquisitely depends on the shape of the particle as well as its size and material. Master glass blowers actually figured this out during the Middle Ages...
The Most Stable Clock in the World
Published: 12-05-2012
The world’s most stable optical atomic clock resides in the Ye lab in the basement of JILA’s S-Wing. The strontium-(Sr-)lattice clock is so stable that its frequency measurements don’t vary by more than 1 part in 100 quadrillion (1 x 10-17) over a time period of 1000 seconds, or 17 minutes. This impressive result was obtained by lead graduate student Travis Nicholson, graduate students Mike Martin, Ben Bloom, Mike Bishof, and Sara Campbell, research associate Jason Williams, former senior...
The Entanglement Tango
Published: 12-05-2012
Most scientists think it is really hard to correlate, or entangle, the quantum spin states of many particles in an ultracold gas of fermions. Fermions are particles like electrons (and some atoms and molecules) whose quantum spin states prevent them from occupying the same lowest-energy state and forming a Bose-Einstein condensate. Entanglement means that two or more particles interact and retain a connection. Once particles are entangled, if something changes in one of them, all linked...
Everything's Cool with Atom
Published: 11-29-2012
The Regal group recently completed a nifty feat that had never been done before: The researchers grabbed onto a single trapped rubidium atom (87Rb) and placed it in its quantum ground state. This experiment has identified an important source of cold atoms that can be arbitrarily manipulated for investigations of quantum simulations and quantum logic gates in future high-speed computers. Here’s how graduate students Adam Kaufman and Brian Lester and Fellow Cindy Regal did it: First, the...
Scratching the Surface
Published: 10-08-2012
Members of the Jin group found a way to measure for the first time the a type of abstract “surface” in a gas of ultracold atoms that had been predicted in 1926 but not previously observed. Jin and her colleagues are leading researchers in the field of ultracold Fermi gases made up of thousands to millions of fermions. Fermions, including electrons and some types of atoms such as potassium (40K), cannot occupy exactly the same quantum state. This property leads to a unique distribution of...
New Silicon Cavity Silences Laser Noise
Published: 09-12-2012
Researchers from a German national laboratory, the Physikalisch-Technische Bundesanstalt (PTB) have collaborated with Fellow Jun Ye, Visiting Fellow Lisheng Chen (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences), and graduate student Mike Martin to come up with a clever approach to reducing heat-related “noise” in interferometers. Interferometers are widely used measurement tools in optical atomic clocks, astronomy, and spectroscopy. Their thermal noise is due to...
New Flavors of Quantum Magnetism
Published: 05-24-2012
News Flash!  The Rey group has discovered another good reason for using alkaline-earth atoms, such as strontium (Sr) or Ytterbium (Yb), in experimental quantum simulators. Quantum simulators are systems that mimic interesting materials or mathematical models in a very controlled way. The new reason for using alkaline earth atoms in such systems comes from the fact that their nuclei come in as many as 10 different magnetic flavors, i.e., their spins can be in 10 different quantum states. When...
The Laser with Perfect Pitch
Published: 04-04-2012
The Thompson group, with theory help from the Holland group, recently demonstrated a superradiant laser that escapes the “echo chamber” problem that limits the best lasers. To understand this problem, imagine an opera singer practicing in an echo chamber. The singer hears his own voice echo from the walls of the room. He constantly adjusts his pitch to match that of his echo from some time before. But, if the walls of the room vibrate, then the singer’s echo will be shifted in pitch after...

Pages