News & Highlights

Research Highlights

A Thousand Splendid Pairs
Published: 11-06-2015
JILA’s cold molecule collaboration (Jin and Ye Groups, with theory support from the Rey Group) recently made a breakthrough in their efforts to use ultracold polar molecules to study the complex physics of large numbers of interacting quantum particles. By closely packing the molecules into a 3D optical lattice (a sort of “crystal of light”), the team was able to create the first “highly degenerate” gas of ultracold molecules. In other words, the ultracold molecular gas was much closer to the...
Natural Born Entanglers
Published: 11-02-2015
The Regal and Rey groups have come up with a novel way to generate and propagate quantum entanglement [1], a key feature required for quantum computing. Quantum computing requires that bits of information called qubits be moved from one location to another, be available to interact in prescribed ways, and then be isolated for storage or subsequent interactions. The group showed that single neutral atoms carried in tiny traps called optical tweezers may be a promising technology for the job! To...
Born of Frustration
Published: 10-21-2015
Scientists often use ultracold atoms to study the behavior of atoms and electrons in solids and liquids (a.k.a. condensed matter). Their goal is to uncover microscopic quantum behavior of these condensed matter systems and develop a controlled environment to model materials with new and advanced functionality. In an exciting new theory investigation, Fellow Ana Maria Rey and research associate Leonid Isaev have showed how ultracold atoms in optical lattices (created with intersecting laser...
The Land of Enhancement: AFM Spectroscopy
Published: 10-16-2015
The Perkins Group has demonstrated a 50 to 100 times improvement in the time resolution for studying the details of protein folding and unfolding on a commercial Atomic Force Microscope (AFM). This enhanced real time probing of protein folding is revealing details in these complex processes never seen before. This substantial enhancement in AFM force spectroscopy may one day have powerful clinical applications, including in the development of drugs to treat disease caused by misfolded proteins...
From BEC to Breathing Forever
Published: 10-05-2015
It took Eric Cornell three years to build JILA’s first Top Trap with his own two hands in the lab. The innovative trap relied primarily on magnetic fields and gravity to trap ultracold atoms. In 1995, Cornell and his colleagues used the Top Trap to make the world’s first Bose-Einstein condensate (BEC), an achievement that earned Cornell and Carl Wieman the Nobel Prize in 2001. The Nobel-Prize-winning creation of BEC had been a race to the finish line, as labs all over the world had also been...
The Guiding Light
Published: 09-21-2015
The Kapteyn/Murnane group, with Visiting Fellow Charles Durfee, has figured out how to use visible lasers to control x-ray light! The new method not only preserves the beautiful coherence of laser light, but also makes an array of perfect x-ray laser beams with controlled direction and polarization. Such pulses may soon be used for observing chemical reactions or investigating the electronic motions inside atoms. They are also well suited for studying magnetic materials and chiral molecules...
An Array of Possibilities
Published: 08-19-2015
Graduate student Brian Lester of the Regal group has taken an important step toward building larger, more complex systems from single-atom building blocks. His accomplishment opens the door to advances in neutral-atom quantum computing, investigations of the interplay of spin and motion as well as the synthesis of novel single molecules from different atoms. What Lester did was to create a 2 x 2 array of independent optical tweezers (traps), each containing a single neutral rubidium atom. He...
Lattice Light and the Chips
Published: 08-10-2015
Compact and transportable optical lattices are coming soon to a laboratory near you, thanks to the Anderson group and its spin-off company, ColdQuanta. A new robust on-chip lattice system (which measures 2.3 cm on a side) is now commercially available. The chip comes with a miniature vacuum system, lasers, and mounting platform. Graduate student Cameron Straatsma and his colleagues recently completed a successful proof-of-principle experiment with the on-chip optical lattice system. Their goal...
Metamorphosis
Published: 07-01-2015
A grand challenge of ultracold physics is figuring out how fermions become bosons. This is an important question because the tiniest quantum particles of matter are all fermions. However, these fermions can form larger chunks of matter, such as atoms and molecules, which can be either fermions or bosons. An interesting feature of fermions and bosons is that they behave very differently at ultracold temperatures. Fermions prefer to go it alone while bosons tend to hang out together. To learn...
About Time
Published: 04-21-2015
The Ye group has just improved the accuracy of the world’s best optical atomic clock by another factor of three and set a new record for clock stability. The accuracy and stability of the improved strontium lattice optical clocks is now about 2 x 10-18, or the equivalent of not varying from perfect time by more than one second in 15 billion years—more than the age of the Universe. Clocks like the Ye Group optical lattice clocks are now so exquisitely precise that they may have outpaced...
A Bug’s Life
Published: 04-20-2015
The Ye Group recently investigated what first appeared to be a “bug” in an experiment and made an unexpected discovery about a new way to generate high-harmonic light using molecular gases rather than gases of noble atoms. Graduate student Craig Benko and his colleagues in the Ye group were studying the interaction of light from an extreme ultraviolet (XUV) frequency comb with molecules of nitrous oxide, or laughing gas (N2O), when they noticed unusual perturbations in the laser spectrum. At...
An Ultrafast Photoelectric Adventure
Published: 03-02-2015
The photoelectric effect has been well known since the publication of Albert Einstein’s 1905 paper explaining that quantized particles of light can stimulate the emission of electrons from materials. The nature of this quantum mechanical effect is closely related to the question how much time it might take for an electron to leave a material such as a helium atom. The exciting news at JILA is that the Ultrafast AMO Theory Group has come up with a clever way that may help to answer this question...
Terms of Entanglement
Published: 02-27-2015
When the Rey theory group first modeled a quantum system at JILA, it investigated the interactions of strontium atoms in the Ye group’s strontium-lattice clock. The quantum behavior of these collective interactions was relatively simple to model. However, the group has now successfully tackled some more complicated systems, including the ultracold polar KRb molecule experiment run by the Jin and Ye groups. In the process, the group has developed a new theory that will open the door to probing...
Mutant Chronicles
Published: 01-20-2015
Because red fluorescent proteins are important tools for cellular imaging, the Jimenez group is working to improve them to further biophysics research. The group’s quest for a better red-fluorescent protein began with a computer simulation of a protein called mCherry that fluoresces red light after laser illumination. The simulation identified a floppy (i.e., less stable) portion of the protein “barrel” enclosing the red-light emitting compound, or chromophore. The thought was that when the...
The Polarized eXpress
Published: 12-10-2014
Until recently, researchers who wanted to understand how magnetic materials work had to reserve time on a large, stadium-sized X-ray machine called a synchrotron. Synchrotrons can produce X-ray beams that can be sculpted very precisely to capture how the spins in magnetic materials work together to give us beautiful and useful magnetic properties – for example to store data in a computer hard drive. But now, thanks to Patrik Grychtol and his colleagues in the Kapteyn/Murnane group, there’s a...
Exciting Adventures in Coupling
Published: 10-31-2014
New theory describing the spin behavior of ultracold polar molecules is opening the door to explorations of exciting, new physics in JILA’s cold molecular lab, operated by the Jin and Ye groups. According to the Rey theory group and its collaborators, ultracold dipolar molecules can do even more interesting things than swapping spins. For instance, spin swapping occurs naturally when ultracold potassium-rubidium (KRb) molecules are in two of their four possible excited and ground states. The...
The Quantum Identity Crisis
Published: 10-14-2014
Dynamical phase transitions in the quantum world are wildly noisy and chaotic. They don’t look anything like the phase transitions we observe in our everyday world. In Colorado, we see phase transitions caused by temperature changes all the time: snow banks melting in the spring, water boiling on the stove, slick spots on the sidewalk after the first freeze. Quantum phase transitions happen, too, but not because of temperature changes. Instead, they occur as a kind of quantum “metamorphosis”...
Atoms, Atoms, Frozen Tight in the Crystals of the Light, What Immortal Hand or Eye Could Frame Thy Fearful Symmetry?
Published: 08-18-2014
Symmetries described by SU(N) group theory made it possible for physicists in the 1950s to explain how quarks combine to make protons and neutrons and JILA theorists in 2013 to model the behavior of atoms inside a laser. Now, the Ye group has observed a manifestation of SU(N≤10) symmetry in the magnetic behavior of strontium-87 (87Sr) atoms trapped in crystals of light created by intersecting laser beams inside a quantum simulator (originally developed as an optical atomic clock). This first-...
Quantum Entanglement
Published: 07-13-2014
The spooky quantum property of entanglement is set to become a powerful tool in precision measurement, thanks to researchers in the Thompson group. Entanglement means that the quantum states of something physical—two atoms, two hundred atoms, or two million atoms—interact and retain a connection, even over long distances. Even without exploiting entanglement, atoms are already used as exquisite sensors of time, gravity, rotations, and magnetic fields because the rules of quantum mechanics allow...
Invisible Rulers of Light
Published: 06-20-2014
The Ye group has not only made two invisible rulers of extreme ultraviolet (XUV) light, but also figured out how to observe them with ordinary laboratory electronics. With this setup, the researchers were able to prove that the two rulers had extraordinarily long phase-coherence time. This feat is so profound, it is nearly certain to transform the investigation of matter with extreme ultraviolet light, according to Ye’s colleagues in precision measurement and laser science. This research was...
Sky Clocks and the World of Tomorrow
Published: 06-13-2014
Imagine a network of multiple clocks orbiting the Earth, not only reporting down to us, but also collaborating quantum mechanically among themselves to operate precisely in sync as a single global superclock, or world clock. The world clock is delivering the most precise timekeeping in all of human history—to every member nation regardless of politics, alliances, or behavior on the ground. Moreover, the world clock itself is virtually immune to sabotage and can peer under the surface of the...
The Long and the Short of Soft X-rays
Published: 05-27-2014
Mid-infrared (mid-IR) laser light is accomplishing some remarkable things at JILA. This relatively long-wavelength light (2–4 µm), when used to drive a process called high-harmonic generation, can produce bright beams of soft x-rays with all their punch packed into isolated ultrashort bursts. And, all this takes place in a tabletop-size apparatus. The soft x-rays bursts have pulse durations measured in tens to hundreds of attoseconds (10-18 s). Until now, attosecond pulses were limited to the...
Crowd-Folding
Published: 05-22-2014
Biomolecules may not always behave the same way in test tubes as they do in living cells, a fact underscored by important new work by former research associate Nick Dupuis, graduate student Erik Holmstrom, and Fellow David Nesbitt. The researchers found that under crowded conditions that begin to mimic those found in cells, single RNA molecules folded 35 times faster than in the dilute solutions typically used in test-tube experiments. Crowding also led to a modest decrease in the unfolding...
The Measure of Small Things
Published: 04-23-2014
Fellow Tom Perkins’ group is significantly closer to realizing its long-standing dream of using atomic force microscopy (AFM) to study how membrane proteins fold and unfold. Historically, scientists have used AFM to measure the mechanical forces needed to unfold individual proteins and the resulting increase in their lengths. However, the limitations of AFM itself have prevented researchers from watching the unfolding process in detail. For AFM to resolve protein unfolding in detail, three...
The Unfolding Story of Telomerase
Published: 04-17-2014
Graduate student Erik Holmstrom and Fellow David Nesbitt have applied their laboratory research on the rates of RNA folding and unfolding to the medically important enzyme telomerase. Telomerase employs both protein and RNA components to lengthen chromosomes, which are shortened every time they are copied. If one short piece of the RNA in telomerase is folded into an organized structure called a pseudoknot, then the enzyme works properly. The enzyme repeatedly adds short pieces of DNA to the...

Pages